Материалы по курсу "Математический анализ" профессора Е.А.Бадерко

Конспекты лекций (рукописные и в формате ТеХ/pdf):

  1. Лекции 1 семестра
  2. Лекции 2 семестра (еще один вариант конспекта)
  3. Лекции 3 семестра (вариант, набранный в ТеХе; еще один вариант)
  4. Лекции 4 семестра (второй вариант и третий вариант (pdf))

 

Экзаменационные вопросы по курсу математического анализа  (2-й курс, 3-й семестр 2020/2021 уч. года.)

  1. Числовые ряды и их основные свойства (необходимый признак сходимости, остаток ряда, критерий Коши). Знакоположительные ряды (критерий сходимости, признаки сравнения, предельный признак сравнения).
  2. Знакоположительные ряды (признак Даламбера, формулировка признака Гаусса, радикальный признак Коши, интегральный признак Коши).
  3. Знакопеременные ряды (абсолютная и условная сходимость, перестановка членов абсолютно сходящегося ряда). Теорема Абеля об умножении двух абсолютно сходящихся рядов.
  4. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда.
  5. Признаки сходимости Дирихле и Абеля.
  6. Функциональные последовательности (поточечная и равномерная сходимости, критерий Коши и специальный критерий равномерной сходимости, признак Дини).
  7. Свойства равномерно сходящихся последовательностей (предельный переход, непрерывность предельной функции). Полнота С[a,b].
  8. Интегрование и дифференцирование функциональных последовательностей.
  9. Функциональные ряды (поточечная и равномерная сходимости, критерий Коши равномерной сходимости, предельный переход, почленное интегрирование и дифференцирование). Признак Вейерштрасса равномерной сходимости ряда.
  10. Признаки Дирихле и Абеля равномерной сходимости ряда.
  11. Степенные ряды (первая теорема Абеля, радиус и интервал сходимости).
  12. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сумма и произведение степенных рядов.
  13. Интегрирование и дифференцирование степенных рядов.
  14. Единственность разложения функции в степенной ряд. Ряд Тейлора. Разложения в ряд Тейлора: ехр х; cos x; sin x.
  15. Разложения в ряд Тейлора: (1 + х)α; ln(1 + x).
  16. Непрерывность интеграла, зависящего от трех параметров (в т.ч., от нижнего и верхнего пределов).
  17. Семейства функций, зависящих от параметра: равномерная сходимость, критерии Коши и Гейне равномерной сходимости. Предельный переход под знаком интеграла.
  18. Дифференцируемость интеграла, зависящего от трех параметров (в т.ч., от нижнего и верхнего пределов). Формула Лейбница.
  19. Интегрируемость интеграла, зависящего от параметра.
  20. Равномерная сходимость несобственных интегралов: а) с бесконечным промежутком интегрирования; б) от неограниченных функций. Критерии Коши и Гейне. Критерий равномерной сходимости несобственного интеграла от неотрицательной функции.
  21. Признаки Вейерштрасса, Дирихле и Абеля равномерной сходимости несобственных интегралов.
  22. Предельный переход в несобственном интеграле. Непрерывность несобственного интеграла, зависящего от параметра.
  23. Дифференцируемость несобственного интеграла, зависящего от параметра. Интеграл Дирихле.
  24. Интегрируемость  несобственного интеграла, зависящего от параметра. Теорема об изменении порядка интегрирования в повторных несобственных интегралах.
  25. Интеграл Пуассона. Интегралы Эйлера. Формулировка теорема Вейерштрасса о приближении непрерывной функции многочленами.
  26. Ортогональные системы функций. Ортогональность и линейная независимость. Ряд Фурье кусочно-непрерывной функции по ортогональной системе. Теорема о единственности разложения в ряд по ортогональной системе. Неравенство Бесселя.
  27. Тригонометрический ряд Фурье. Теорема о достаточных условиях сходимости ряда Фурье в точке

Экзаменационные вопросы по курсу математического анализа (2 курс, 4 семестр, 2020-2021 уч.год.).

  1. Интеграл Римана на брусе. Необходимое условие интегрируемости. Суммы Дарбу. Верхний и нижний интегралы Дарбу.
  2. Предельный критерий интегрируемости на брусе. Критерий Дарбу.
  3. Множества меры нуль. Теорема об инвариантности меры нуль при С1 – отображении (формулировка). База окрестностей в ℝn. Теорема о выделении счетного подпокрытия из открытого покрытия множества в  ℝn. Достаточное условие для множества быть множеством меры нуль.
  4.  Мера графика непрерывной функции. Теорема Сарда для m < n. Формулировка теорем Сарда для m = n и для m > n.
  5. Множества объема нуль. Колебания функции в точке. Критерий Бэра непрерывности функции в точке. Теорема Кантора.
  6. Критерий Лебега интегрируемости на брусе.
  7. Измеримые по Жордану множества. Критерий измеримости по Жордану. Критерий для измеримого множества быть множеством объема нуль.
  8. Пересечение и объединение конечного числа измеримых множеств. Теорема о локальном диффеоморфизме (формулировка). Теорема о сохранении измеримости при С1- отображении.
  9. Интеграл Римана на ограниченном множестве в ℝn. Корректность определения. Критерий Лебега интегрируемости на измеримом множестве.
  10. Теорема о равенстве интегралов для интегрируемых функций, равных нулю почти всюду. Линейность интеграла. Произведение интегрируемых функций. Интегрируемость на измеримом подмножестве. Аддитивность интеграла.
  11. Модуль интегрируемой функции. Интеграл от неотрицательной функции. Интеграл по брусу от положительной функции. Теорема о неотрицательной функции, интеграл которой равен нулю.
  12. Теоремы Фубини для бруса и для цилиндроида.
  13. Замена переменных в случае простейшего диффеоморфизма. Замена переменных в случае финитной функции. Теорема о замене переменной в общем случае.
  14. Несобственные кратные интегралы.
  15. Криволинейный интеграл I рода на плоскости и пространстве. Сведение криволинейного интеграла I рода к определенному интегралу.
  16. Криволинейный интеграл II рода. Вычисление криволинейного интеграла II рода.
  17. Теорема о независимости криволинейного интеграла от пути интегрирования. Теорема об аппроксимации криволинейного интеграла (формулировка). Формула Грина. Критерий полного дифференциала.
  18. Задание поверхности в пространстве. Край и внутренние точки поверхности. Гладкая поверхность. Регулярные точки поверхности. Касательная плоскость и нормаль к поверхности. Ориентация поверхности. Преобразование параметров гладкой поверхности. Площадь поверхности. Поверхностный интеграл I рода.
  19. Поверхностный интеграл II рода. Формула Стокса. Формула Гаусса-Остроградского.

 

Категория: