Конспект лекций по математическому анализу

Лектор Бадерко Е.А.

Часть 2 Интегральное исчисление функций одной переменной

Отделение механики, 1 курс, 2 семестр, 2019-2020 уч. г.

Об опечатках большая просьба сообщать составившему конспект Некрасову Всеволоду на почту vsevolod.nekrasov@math.msu.ru

Содержание

Глава 1. Неопределённый интеграл	3
§1. Свойства производных дифференцируемых функций	3
§2. Первообразные функции. Неопределённый интеграл	5
Глава 2. Определённый интеграл	9
§1. Определение интеграла Римана	9
§2. Свойства интеграла Римана	20
§3. Интеграл Римана как функция верхнего (нижнего) предела	28
§4. Формула Ньютона-Лейбница для интегрируемой функции	31
§5. Замена переменной и интегрирование по частям в определённом ин-	
теграле	34
§6. Несобственные интегралы с бесконечными пределами	37
§7. Несобственные интегралы от неограниченных функций	44
§8. Некоторые приложения интеграла	49

Глава 1. Неопределённый интеграл

$\S 1$. Свойства производных дифференцируемых функций

Напоминание: $f \in \mathcal{D}[a,b] \stackrel{\mathrm{def}}{\Leftrightarrow} (f \in \mathcal{D}(a,b)) \wedge (\exists f'_{+}(a) \in \mathbb{R}) \wedge (\exists f'_{-}(b) \in \mathbb{R})$

Теорема 1. Пусть $f \in \mathcal{D}[a,b], f'_{+}(a) \stackrel{(>)}{<} f'_{-}(b)$. Тогда $\forall M \in (f'_{+}(a), f'_{-}(b)) (unu (f'_{-}(b), f'_{+}(a)))$ $\exists c \in (a,b) \ makee, \ uno \ f'(c) = M.$

- ▶ Без ограничения общности, $f'_{+}(a) < f'_{-}(b)$.
 - Рассмотрим частный случай: $f'_{+}(a) < 0, f'_{-}(b) > 0$. Докажем, что $\exists c \in (a,b)$ такое, что f'(c) = 0. По условию, $f \in \mathcal{D}[a,b] \Rightarrow f \in \mathcal{C}[a,b] \stackrel{\text{2 T. Beйерштрасса}}{\Rightarrow} \exists c \in (a,b) \mid f(c) = \min_{[a,b]} f$, но:

Во-первых, $c \neq a$. В самом деле, пусть c = a. Тогда $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'_+(a) < 0 \Rightarrow \exists \, \delta > 0 \mid \frac{f(x) - f(a)}{x - a} < 0 \, \forall x \in (a, a + \delta) \Rightarrow f(x) < f(a) = f(c) \, \forall x \in (a, a + \delta) -$ противоречие с тем, что c является точкой минимума.

Во-вторых, $c \neq b$ по аналогичным соображениям.

Таким образом, $\exists \, c \in (a,b) \mid c$ —точка локального экстремума $\stackrel{\mathrm{T. \ }\Phi \mathrm{epma}}{\Rightarrow} f'(c) = 0.$

• Общий случай: пусть $f'_+(a) < f'_-(b), M \in (f'_+(a), f'_-(b))$. Положим $g(x) := f(x) - Mx, x \in [a, b]$. Тогда $g \in \mathcal{D}[a, b]$ и $g'_+(a) = f'_+(a) - M < 0, g'_-(b) = f'_-(b) - M > 0 \overset{\text{Частн. случ.}}{\Rightarrow} \exists \, c \in (a, b) \mid g'(c) = 0.$

Это означает, что $\exists c \in (a, b) \mid f'(c) = M$.

Замечание: В условии теоремы не требуется $f' \in \mathcal{C}[a,b]$

Лемма 1. Пусть $f \in \mathcal{C}[a,b] \cap \mathcal{D}(a,b)$ и $\exists \lim_{x \to a+0} f'(x) =: A$ (или $\exists \lim_{x \to b-0} f'(x) =: B$). Тогда $\exists f'_{+}(a) = A$ (или $\exists f'_{-}(b) = B$).

▶ Пусть
$$\exists \lim_{x \to a+0} f'(x) = A \Rightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; |f'(x) - A| < \varepsilon \; \forall x \in (a, a+\delta).$$
 (1) По теореме Лагранжа, $\forall x \in (a, a+\delta) \; \exists \; \xi_x \in (a, x) \subset (a, a+\delta) \; | \; \frac{f(x) - f(a)}{x - a} = f'(\xi_x).$ (2) Имеем: $\forall \varepsilon > 0 \; \exists \; \delta > 0 \; | \; \left| \frac{f(x) - f(a)}{x - a} - A \right| \stackrel{(1)}{=} \; |f'(\xi_x) - A| \stackrel{(2)}{<} \varepsilon \; \forall \; x \in (a, a+\delta).$ ◀

Замечание:

1) Лемма верна, если $A = \pm \infty$.

$$2) \ f \in \mathcal{D}[a,b] \overset{\mathrm{B.r.}}{\Rightarrow} \exists \lim_{x \to a+0} f'(x) \ (f' \in \mathcal{C}[a,b]).$$

Контрпример:
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$

Действительно,

$$x \neq 0: f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

 $x = 0: \exists f'_{+}(0) = \lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} x \sin \frac{1}{x} = 0$
Но $\nexists \lim_{x \to 0+0} f'(x)$, "портит" косинус.

Пример:
$$f(x) = x \arcsin x + \sqrt{1-x^2}, \ x \in [-1,1]$$
 $x \in (-1,1): f'(x) = \frac{x}{\sqrt{1-x^2}} + \arcsin x - \frac{x}{\sqrt{1-x^2}} = \arcsin x$ $\lim_{x \to \pm 1} f'(x) = \pm \frac{\pi}{2} \overset{\text{Лемма}}{\Rightarrow} \exists \ f'_+(-1) = -\frac{\pi}{2}, \exists \ f'_-(1) = \frac{\pi}{2} \Rightarrow f \in \mathcal{D}[-1,1].$

3) f' может быть разрывна на (a,b).

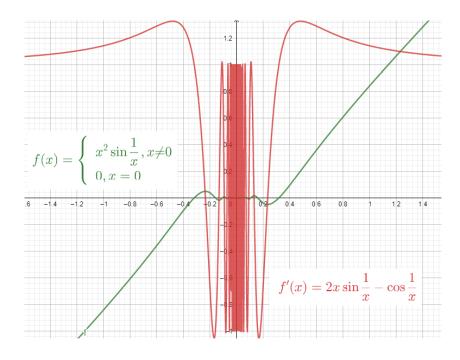


Рис. 1. Контрпример

Теорема 2. $f \in \mathcal{D}(a,b), x_0 \in (a,b), f' \notin \mathcal{C}(x_0) \Rightarrow x_0$ — точка разрыва ІІ-го рода.

► От пр-го:
$$x_0$$
 – т-ка р-ва f' І-го р. \Rightarrow $(\exists \lim_{x \to x_0 + 0} f'(x) = A(1)) \land (\exists \lim_{x \to x_0 - 0} f'(x) = B(2))$

Лемма
$$\stackrel{(1)}{\Rightarrow} \exists f'_{+}(x_{0}) = A$$
 $\exists f'_{-}(x_{0}) = B$ $\Rightarrow f' \in \mathcal{C}(x_{0}) - \text{противоречие.} \blacktriangleleft$

§2. Первообразные функции. Неопределённый интеграл

Пункт 1. Первообразные функции

Определение 1. Пусть $f:(a,b)\to\mathbb{R}$. Тогда $F:(a,b)\to\mathbb{R}$ называется первообразной ϕ ункции f на (a,b), если

- 1) $F \in \mathcal{D}(a,b)$
- 2) $F'(x) = f(x) \ \forall x \in (a, b)$

Замечание: F — первообразная f на $(a,b) \Rightarrow dF(x) = f(x)dx$. Пример:

- $f(x) = sgn(x), x \in (-1,1)$ нет первообразной, т.к. разрыв I рода
- 2) $f(x) = \begin{cases} \frac{1}{x}, x \neq 0 \\ l \neq 0, x = 0 \end{cases}$ $x \in (-1, 1)$ нет первообразной, т.к. не принимает всех
- 3) $f(x) = \begin{cases} \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$ $x \in (-1, 1)$. Имеем (см. замечание 1) к лемме 1 §1): $\exists F'_{+}(0) = +\infty, \exists F'_{-}(0) = -\infty \Rightarrow \nexists F'(0)$

Замечание:

- 1) $f \in \mathcal{C}(a,b) \Rightarrow \exists$ первообразная (будет доказано)
- 2) $f \notin \mathcal{C}(a,b) \stackrel{\mathrm{B.r.}}{\Rightarrow}$ нет первообразной (см. замечание 2) к лемме)

Лемма 1. Пусть $F \in \mathcal{D}(a,b)$. Тогда $F \equiv const$ на $(a,b) \Leftrightarrow F' \equiv 0$ на (a,b).

- ▶ 1) ⇒: очевидно.

лагранжа
$$\Rightarrow$$
 $F(x_1) - f(x_2) = \underbrace{F'(\xi)}_{=0}(x_1 - x_2), \xi \in (a, b) \Rightarrow F(x_1) = F(x_2)$. В силу произвольности выбора $x_1, x_2, F \equiv const$ на (a, b) . \blacktriangleleft

Теорема 1. Пусть $f:(a,b)\to\mathbb{R}, f$ имеет на (a,b) первообразную $F_0\in\mathcal{D}(a,b)\Rightarrow$ множество всех первообразных имеет вид: $\{F_0(x) + C, x \in (a,b), C \in \mathbb{R}\}$.

- ▶ Положим $A := \{$ множество всех первообразных f на $(a,b)\}$ $B := \{F_0(x) + C, x \in (a, b), C \in \mathbb{R}\}\$
 - А \subset В : Пусть $F \in$ А \Rightarrow $F' \equiv f$ на $(a,b) \Rightarrow (F F_0)' = f f \equiv 0$ на $(a,b) \Rightarrow$ По лемме, $F F_0 \equiv const =: C$ на $(a,b) \Rightarrow F(x) = F_0(x) + C \ \forall x \in (a,b) \Rightarrow F \in$ В.
 - B \subset A : Пусть $F \in B \Rightarrow F(x) = F_0(x) + C \ \forall x \in (a,b) \Rightarrow F' \equiv f_{\mathrm{Ha}}(a,b) \Rightarrow F \in A$.

Это означает, что А=В. ◀

Пункт 2. Неопределённый интеграл

Определение 1. Пусть $f:(a,b)\to\mathbb{R}$. Тогда множество всех первообразных функции f на (a,b) называется неопределённым интегралом от функции f на (a,b) и обозначается

$$\int f(x) \, dx$$

f называется подынтегральной функцией.

Таблица неопределённых интегралов

I.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \ (\alpha \in \mathbb{R}, \alpha \neq -1)$$
IX.
$$\int \cos x dx = \sin x + C$$
III.
$$\int \frac{dx}{x} = \ln|x| + C$$
VIII.
$$\int \sin x dx = -\cos x + C$$
IV.
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln\left|\frac{1+x}{1-x}\right| + C$$
XI.
$$\int \frac{dx}{\cos^2 x} = -\cot x + C$$
VI.
$$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + C \\ -\arccos x + C \end{cases}$$
XII.
$$\int \sinh x dx = -\cot x + C$$
VI.
$$\int \frac{dx}{\sqrt{x^2\pm 1}} = \ln\left|x + \sqrt{x^2\pm 1}\right| + C$$
XIII.
$$\int \cosh x dx = \sinh x + C$$
VII.
$$\int \cosh x dx = \sinh x + C$$
XIII.
$$\int \cosh x dx = \sinh x + C$$
VIII.
$$\int \cosh x dx = \sinh x + C$$
XIII.
$$\int \cosh x dx = \sinh x + C$$
VIII.
$$\int \frac{dx}{\sqrt{x^2\pm 1}} = -\coth x + C$$
VIII.
$$\int \frac{dx}{\sin^2 x} = -\coth x + C$$
XIV.
$$\int \frac{dx}{\sinh^2 x} = -\coth x + C$$
XV.
$$\int \frac{dx}{\cosh^2 x} = \coth x + C$$
XV.
$$\int \frac{dx}{\cosh^2 x} = -\coth x + C$$

(Таблица 1)

Замечание: Интеграл II. — удобная запись, но не совсем аккуратно.

Связь дифференцирования и интегрирования (или "зачем dx?"):

- 1) Пусть $f:(a,b)\to\mathbb{R}$ имеет на (a,b) первообразную $F\in\mathcal{D}(a,b)$. Тогда $dF(x)=F'(x)\,dx=f(x)\,dx$. Следовательно, если $\exists\int f(x)\,dx$, то $d\int\underbrace{f(x)\,dx}_{dF}=\underbrace{f(x)\,dx}_{dF}$.
- 2) Пусть $F \in \mathcal{D}(a,b)$. Тогда F' имеет на (a,b) первообразную $F \Rightarrow \int dF(x) = \int F'(x) \, dx = F(x) + C.$

Обратное понятие к интегралу — дифференциал.

Пункт 3. Основные свойства неопределённого интеграла

Теорема 1 (Линейность). Пусть $f:(a,b)\to\mathbb{R},\ g:(a,b)\to\mathbb{R}\ u\ \exists \int f(x)\,dx, \int g(x)\,dx.$ Тогда

$$\exists \int \left(\alpha f(x) + \beta g(x)\right) dx = \alpha \int f(x) dx + \beta \int g(x) dx, \ x \in (a, b)$$
 (1)

▶ Пусть F — первообразная f на (a,b), G — первообразная g на (a,b).

Положим $H(x) := \alpha F(x) + \beta G(x), \ x \in (a,b)$. Согласно линейности производной, имеем: $H'(x) = \alpha f(x) + \beta g(x) =: h(x) \Rightarrow h$ имеет первообразную H на $(a,b) \Rightarrow \exists \int h(x) \, dx = H(x) + C = (\alpha F(x) + C) + \beta G(x) \in \text{пр.ч.}$ (1).

Наконец, пусть $H_1 \in$ пр.ч. $(1) \Rightarrow H_1(x) = \alpha \big(F(x) + C_1 \big) + \beta \big(G(x) + C_2 \big)$ для некоторых C_1 и C_2 . Положив $C := \alpha C_1 + \beta C_2$, получим: $H_1(x) = H(x) + C \in$ лев. ч. $(1) \Rightarrow$ множества совпадают. \blacktriangleleft

Теорема 2 (Интегрирование по частям).

Пусть $u, v: (a, b) \to \mathbb{R}, u, v \in \mathcal{D}(a, b), \exists \int u'(x)v(x) dx, \ x \in (a, b).$ Тогда

$$\exists \int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx \tag{2}$$

Рассмотрим $\underbrace{\left(u(x)v(x)\right)'}_{\text{есть первообр.}} = \underbrace{u'(x)v(x)}_{\text{есть первообр.}} + u(x)v'(x)$. Следовательно, по Т1,

как разность функций, $\exists \int u(x)v'(x)\,dx = u(x)v(x) - \int u'(x)v(x)\,dx$. \blacktriangleleft

Пример:
$$\int \ln x \, dx = \int \ln x(x)' \, dx = x \ln x - \int \frac{1}{x} x \, dx = x \ln x - x + C.$$

Теорема 3 (Замена переменной в неопределённом интеграле).

Пусть
$$\varphi: (\alpha, \beta) \to (a, b), f: (a, b) \to \mathbb{R}, \varphi \in \mathcal{D}(\alpha, \beta) \ u \ \exists \int f(x) \, dx = F(x) + C$$
 (3)

$$\exists \int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C, \ t \in (\alpha, \beta)$$
(4)

▶ Дифференцируем правую часть (4):

$$\left[F\big(\varphi(t)\big)\right]' = F'\big(\varphi(t)\big)\varphi'(t) \stackrel{(3)}{=} f\big(\varphi(t)\big)\varphi'(t) \Rightarrow \text{равенство (4) верно.} \blacktriangleleft$$

Замечание: Если выполнены условия Т3, то можно записать (4) в виде

$$\int f(\varphi(t)) d\varphi(t) = F(\varphi(t)) + C, t \in (\alpha, \beta)$$

Пример:
$$f(x)=e^x, x\in\mathbb{R}, \varphi(t)=t^2, t\in\mathbb{R}.$$

$$\exists \int e^x\,dx=e^x+C\stackrel{\mathrm{T3}}{\Rightarrow} \exists \int te^{t^2}\,dt=\frac{1}{2}\int e^{t^2}\,d(t^2)=\frac{1}{2}e^{t^2}+C$$

Теорема 4 (Замена переменной: подстановка).

Пусть $\varphi : [\alpha, \beta] \to [a, b], f : [a, b] \to \mathbb{R},$

$$\varphi \in \mathcal{C}[\alpha, \beta] \cap \mathcal{D}(\alpha, \beta), \varphi(\alpha) = a, \varphi(\beta) = b \ (u \wedge u \ \varphi(\alpha) = b, \varphi(\beta) = a), \varphi \uparrow \uparrow (\downarrow \downarrow) \ на \ [\alpha, \beta].$$
(Условия T . о производной обратной функции)

Кроме того, пусть
$$\exists \int f(\varphi(t))\varphi'(t) dt = \Phi(t) + C, t \in (\alpha, \beta)$$
 (5)

$$\exists \int f(x) dx = \Phi(\varphi^{-1}(x)) + C, x \in (a, b)$$
 (6)

▶ Т. к. выполнены все условия теоремы о производной обратной функции, то:

$$\left[\varphi^{-1}(x)\right]' = \frac{1}{\varphi'(\varphi^{-1}(x))} \,\forall x \in (a,b) \tag{7}$$

Тогда, дифференцируя правую часть (6), получим:

$$\begin{split} \left[\Phi\left(\varphi^{-1}(x)\right)\right]' &= \Phi'\left(\varphi^{-1}(x)\right) \cdot \left[\varphi^{-1}(x)\right]' \stackrel{(5),(7)}{=} \underbrace{f\left(\varphi(\varphi^{-1}(x))\right) \cdot \varphi'\left(\varphi^{-1}(x)\right)}_{\text{\tiny M3}(5)} \cdot \underbrace{\frac{1}{\varphi'\left(\varphi^{-1}(x)\right)}}_{\text{\tiny M3}(7)} = \\ &= f\left(\varphi(\varphi^{-1}(x))\right) = f(x) \; \forall x \in (a,b). \end{split}$$

Это означает, что равенство (6) верно. ◀

Пример:
$$f(x) = \sqrt{1-x^2}, \ x \in [-1,1], \ \varphi(t) = \sin t, \ t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
 $\exists \int \sqrt{1-(\sin t)^2} \cos t dt = \int \cos^2 t \, dt = \int \frac{1+\cos 2t}{2} dt = \frac{1}{2}(t+\sin t \cos t) + C \stackrel{\mathrm{T4}}{\Rightarrow}$ $\exists \int \sqrt{1-x^2} = \frac{1}{2}(\arcsin x + \sin(\arcsin x)\cos(\arcsin x)) + C = \frac{1}{2}(\arcsin x + x\sqrt{1-x^2}) + C$

Глава 2. Определённый интеграл

§1. Определение интеграла Римана

Пункт 1. Определение интеграла. Интегрируемость

Пусть дан отрезок [a,b].

Определение 1.

ullet Разбиением ${\cal P}$ отрезка [a,b] называется множество

$$\{x_0, x_1, \dots, x_n \in [a, b] \mid a = x_0 < x_1 < \dots < x_n = b\}$$

- Диаметр разбиения $d=d(\mathcal{P})\stackrel{\mathrm{def}}{=}\max_{k=1,\dots,n}\Delta x_k$, где $\Delta x_k=x_k-x_{k-1}$
- Отрезки $[x_{k-1},x_k], k=1,\ldots,n$ частичные отрезки разбиения $\mathcal P$

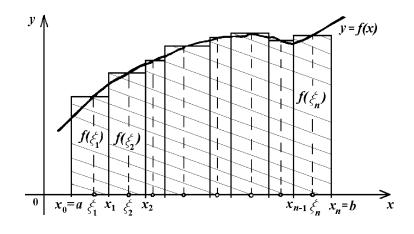
Определение 2. Пусть \mathcal{P} — разбиение отрезка [a,b]. Для всех $k=1,\ldots,n$ фиксируем произвольно $\xi_k \in [x_{k-1},x_k]$. Далее, положим "метку" $\xi := (\xi_1,\ldots,\xi_n)$. Разбиение \mathcal{P} вместе с "меткой" ξ называется размеченным разбиением ξ и обозначается ξ .

Определение 3. Пусть $f:[a,b]\to\mathbb{R}, (\mathcal{P},\xi)$ — произвольное размеченное разбиение [a,b]. Тогда <u>число</u>

$$\sigma(f, \mathcal{P}, \xi) = \sigma(\mathcal{P}, \xi) := \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

называется интегральной суммой функции f для (\mathcal{P}, ξ) .

Пример: $f \in C[a, b], f > 0$ на (a, b).



Определение 4.
$$\mathit{Число}\ I := \lim_{d(\mathcal{P}) \to 0} \sigma(f, \mathcal{P}, \xi) = \lim_{d(\mathcal{P}) \to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k \overset{\mathrm{def}}{\Leftrightarrow}$$

$$\stackrel{\mathrm{def}}{\Leftrightarrow} \forall \, \varepsilon > 0 \, \, \exists \, \delta > 0 \, \, | \, \big| I - \sigma(f, \mathcal{P}, \xi) \big| < \varepsilon \, \, \forall \, (\mathcal{P}, \xi) \, \, c \, \, \textit{ychobuem} \, \, d(\mathcal{P}) < \delta.$$

Рассмотрим множество размеченных разбиений \mathscr{P} отрезка [a,b]. Построим базу \mathbb{B} на этом множестве

$$\mathbb{B} := \{B_{\delta}, 0 < \delta \leq b - a, \text{где } B_{\delta} = \{(\mathcal{P}, \xi) \mid d(\mathcal{P}) < \delta\}\}$$

(Убедитесь, что это действительно база). Рассматривая определение 4 как предел по базе В, получим

Теорема 1 (Критерий Коши существования предела).

$$\exists \lim_{d(\mathcal{P})\to 0} \sigma(\mathcal{P},\xi) \in \mathbb{R} \Leftrightarrow \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, | \, \forall \, (\mathcal{P}_1,\xi_1) \, u \, (\mathcal{P}_2,\xi_2) \, c \, \textit{условием } d(\mathcal{P}_i) < \delta, i = 1,2$$
 выполено $|\sigma(\mathcal{P}_1,\xi_1) - \sigma(\mathcal{P}_2,\xi_2)| < \varepsilon$

Определение 5. Пусть
$$f:[a,b]\to\mathbb{R}$$
.
Тогда $f-\boxed{uнтегрируема\ (no\ Puману)}$ на $[a,b]\overset{\mathrm{def}}{\Leftrightarrow}\exists\ \lim_{d(\mathcal{P})\to 0}\sigma(f,\mathcal{P},\xi)=:I\in\mathbb{R}$

Обозначение: $f \in \mathcal{R}[a,b]$.

Число I называется интегралом (Римана) функции f на [a,b] и обозначается

$$\int_{a}^{b} f(x) \, dx = I$$

Пример:

1)
$$f(x) = const = c$$
 на $[a, b]$
$$\sigma(\mathcal{P}, \xi) = \sum_{k=1}^{n} c\Delta x_k = c \underbrace{\sum_{k=1}^{n} (x_k - x_{k-1})}_{b-a} = c(b-a)$$

2)
$$f(x) = x, x \in [a, b]$$

$$\sigma(\mathcal{P}, \xi) = \sum_{k=1}^{n} \xi_{k} \Delta x_{k} = \sum_{k=1}^{n} \frac{x_{k} + x_{k-1}}{2} (x_{k} - x_{k-1}) + \sum_{k=1}^{n} \left(\xi_{k} - \frac{x_{k} + x_{k-1}}{2} \right) \Delta x_{k} = \frac{1}{2} \sum_{k=1}^{n} (x_{k}^{2} - x_{k-1}^{2}) + A = \frac{1}{2} (b^{2} - a^{2}) + A$$

$$= \frac{1}{2} \sum_{k=1}^{n} (x_{k}^{2} - x_{k-1}^{2}) + A = \frac{1}{2} (b^{2} - a^{2}) + A$$

$$\text{Ho} \left| \xi_{k} - \frac{x_{k} + x_{k-1}}{2} \right| < d(\mathcal{P}) \Rightarrow |A| < \sum_{k=1}^{n} d(\mathcal{P}) \Delta x_{k} = d(\mathcal{P}) \sum_{k=1}^{n} \Delta x_{k} = d(\mathcal{P}) (b - a) \xrightarrow{d(\mathcal{P}) \to 0} 0 \Rightarrow \int_{a}^{b} x \, dx = \frac{1}{2} (b^{2} - a^{2})$$

3) "Суперважный" классический пример — функция Дирихле:

$$f(x) := \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

Докажем, что $\forall [a,b] \ f \notin \mathcal{R}[a,b]$.

▶ Воспользуемся критерием Коши. Составим отрицание интегрируемости: $\exists \varepsilon > 0 \mid \forall \delta \in (0, b - a] \exists (\mathcal{P}_1, \xi_1), (\mathcal{P}_2, \xi_2) \in B_\delta \text{ с усл. } |\sigma(\mathcal{P}_1, \xi_1) - \sigma(\mathcal{P}_2, \xi_2)| \ge \varepsilon.$ Пусть [a,b] — произвольный отрезок и пусть $\delta \in (0,b-a]$ — фикс. произвольно. Рассмотрим произвольное разбиение \mathcal{P} с $d(\mathcal{P}) < \delta$ и выберем для \mathcal{P} две метки:

$$\xi' := (\xi'_1, \dots, \xi'_n) \mid \xi'_k \in \mathbb{Q}$$
 $\xi'' := (\xi''_1, \dots, \xi''_n) \mid \xi''_k \in \mathbb{R} \setminus \mathbb{Q}$

$$= \left| \sum_{k=1}^n 1 \cdot \Delta x_k - \sum_{k=1}^n 0 \cdot \Delta x_k \right| = b - a, \text{ то есть отрицание существования предела}$$

верно для $\varepsilon = b - a$. Следовательно, функция Дирихле не является интегрируемой (по Риману) на любом отрезке [a, b].

Пункт 2. Необходимое условие интегрируемости функции

Теорема 1 (Необходимое условие интегрируемости). $f \in \mathcal{R}[a,b] \Rightarrow f \in \mathcal{B}[a,b].$

- ▶ От противного: пусть $f \in \mathcal{R}[a,b]$, но $f \notin \mathcal{B}[a,b]$.
 - 1) $f \in \mathcal{R}[a,b] \Rightarrow$ для $\varepsilon = 1 \; \exists \; \delta \; | \; |\sigma(\mathcal{P},\xi) I| < 1 \; \forall (\mathcal{P},\xi) \; \text{с условием} \; d(\mathcal{P}) < \delta \Rightarrow |\sigma(\mathcal{P},\xi)| < |I| + 1 \; \forall (\mathcal{P},\xi) \; \text{с условием} \; d(\mathcal{P}) < \delta$
 - 2) Фикс. произ-но разб-ие $\mathcal{P}^0 = \{x_0, x_1, \dots, x_n \in [a, b]\}$ с $d(\mathcal{P}^0) < \delta$, где δ из п.1) $f \notin \mathcal{B}[a, b] \Rightarrow \exists \ k_0 \in \{1, \dots, n\} \mid f \notin \mathcal{B}[x_{k_0-1}, x_{k_0}]$. Рассмотрим для \mathcal{P}^0 метку

$$\xi = \xi(\tau) = (x_1, x_2, \dots, x_{k_0 - 1}, \tau, x_{k_0 + 1}, \dots, x_n), \tau \in [x_{k_0 - 1}, x_{k_0}]$$
 причём $\sigma(\mathcal{P}^0, \xi(\tau)) = \underbrace{\sum_{k = 1, k \neq k_0}^n f(x_k) \Delta x_k}_{=:\sigma^*} + f(\tau) \Delta x_{k_0} = \sigma^* + f(\tau) \Delta x_{k_0}$

причем
$$\sigma(\mathcal{P}^{\circ}, \xi(\tau)) = \underbrace{\sum_{k=1, k \neq k_0} f(x_k) \Delta x_k}_{=:\sigma^*}$$

Имеем: $f \notin \mathcal{B}[a,b] \Rightarrow \exists \tau_0 \mid f(\tau_0) \geq \frac{|I|+1+|\sigma^*|}{\Delta x_{tr}}$ (удобная для нас заданная наперёд константа). Тогда:

$$\left| \sigma \left(\mathcal{P}^0, \xi(\tau_0) \right) \right| = \sigma^* + f(\tau_0) \Delta x_{k_0} \ge \left| f(\tau_0) \right| \Delta x_{k_0} - |\sigma^*| \ge \frac{|I| + 1 + |\sigma^*|}{\Delta x_{k_0}} \Delta x_{k_0} - |\sigma^*| = |I| + 1$$

В итоге, имеем противоречие с пунктом 1). ◀

Пункт 3. Достаточное условие интегрируемости функции в терминах колебаний функции на частичных отрезках

Определение 1. Пусть \mathcal{P} — разбиение отрезка [a,b]. Разбиение $\widetilde{\mathcal{P}}$ называется измельчением $\mathcal{P} \overset{\mathrm{def}}{\Leftrightarrow} \widetilde{\mathcal{P}} \supset \mathcal{P}$

Замечание:

1)
$$\mathcal{P} = \{x_k, k \in \{0, \dots, n\}\},$$
 тогда $\widetilde{\mathcal{P}} = \{x_{k_l}, k \in \{0, \dots, n\}, l \in \{0, \dots, m_k\}\}$

2)
$$\widetilde{\mathcal{P}} = \mathcal{P}_1 \cup \mathcal{P}_2 \Rightarrow \widetilde{\mathcal{P}}$$
 — измельчение \mathcal{P}_1 и $\widetilde{\mathcal{P}}$ — измельчение \mathcal{P}_2 .

Определение 2. Пусть $f \in \mathcal{B}[a,b]$. Тогда | колебанием | f на [a,b] называется

$$\omega(f, [a, b]) := \sup_{x', x'' \in [a, b]} |f(x') - f(x'')|$$

Замечание:

1) Если
$$f \in \mathcal{B}[a,b]$$
, т.е. $\exists M > 0 \mid |f(x)| < M \ \forall x \in [a,b] \Rightarrow \omega(f,[a,b]) \le 2M$

2)
$$\omega(f, [a, b]) = \sup_{[a, b]} f - \inf_{[a, b]} f$$

2)
$$\omega(f, [a, b]) = \sup_{[a,b]} f - \inf_{[a,b]} f$$

• Обозначим $M := \sup_{[a,b]} f, m := \inf_{[a,b]} f$. Докажем сначала, что

$$\omega(f, [a, b]) \le M - m.$$

В самом деле, имеем:

$$m-M \le f(x') - f(x'') \le M - m \Rightarrow |f(x') - f(x'')| \le M - m.$$

$$\exists x_n' \in [a,b] \mid \lim_{n \to \infty} f(x_n') = M, \exists x_n'' \in [a,b] \mid \lim_{n \to \infty} f(x_n'') = m$$

Докажем теперь, что
$$\omega(f, [a, b]) \ge M - m$$
.
 $\exists x_n' \in [a, b] \mid \lim_{n \to \infty} f(x_n') = M, \exists x_n'' \in [a, b] \mid \lim_{n \to \infty} f(x_n'') = m$

Имеем: $\omega(f, [a, b]) = \sup_{x', x'' \in [a, b]} |f(x') - f(x'')| \ge |f(x_n') - f(x_n'')| \forall n$

Переходя к пределу, получим:

$$\omega(f, [a, b]) \ge \lim_{n \to \infty} |f(x'_n) - f(x''_n)| = \left| \lim_{n \to \infty} (f(x'_n) - f(x''_n)) \right| = M - m. \blacktriangleleft$$

На множестве разбиений отрезка [a, b] рассмотрим базу (без метки)

$$\mathbb{B}^*=ig\{B^*_\delta,\delta\in(0,b-a]ig\},B^*_\delta=\{\mathcal{P}- ext{pas}$$
 биение $[a,b]\mid d(\mathcal{P})<\delta\}$

Обозначение: Пусть
$$f \in \mathcal{B}[a,b]$$
. Тогда $\Omega(f,\mathcal{P}) = \Omega(\mathcal{P}) := \sum_{k=1}^n \omega \big(f,[x_{k-1},x_k]\big) \Delta x_k$

Определение 3. Пусть $f \in \mathcal{B}[a,b]$. Тогда

$$\lim_{d(\mathcal{P})\to 0} \Omega(f,\mathcal{P}) = 0 \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \Omega(f,\mathcal{P}) < \varepsilon \; \forall \mathcal{P} \in B_{\delta}^*$$

Лемма 1. Пусть $f \in \mathcal{B}[a,b], \lim_{d(\mathcal{P})\to 0} \Omega(f,\mathcal{P}) = 0$. Тогда $f \in \mathcal{R}[a,b]$.

- ▶ Доказательство по критерию Коши.
 - 1) Пусть \mathcal{P} разбиение отрезка [a,b], $\widetilde{\mathcal{P}}$ измельчение \mathcal{P} . Пусть ξ метка для \mathcal{P} , $\widetilde{\xi}$ метка для $\widetilde{\mathcal{P}}$. Тогда:

$$\left| \sigma(\mathcal{P}, \xi) - \sigma(\widetilde{\mathcal{P}}, \widetilde{\xi}) \right| = \left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k - \sum_{k=1}^{n} \sum_{l=1}^{m_k} f(\widetilde{\xi}_{k_l}) \Delta x_{k_l} \right| =$$

$$= \left| \sum_{k=1}^{n} \sum_{l=1}^{m_k} \left[f(\xi_k) - f(\widetilde{\xi}_{k_l}) \right] \Delta x_{k_l} \right| \le \sum_{k=1}^{n} \sum_{l=1}^{m_k} \left| f(\xi_k) - f(\widetilde{\xi}_{k_l}) \right| \Delta x_{k_l} \le$$

$$\le \sum_{k=1}^{n} \omega \left(f, [x_{k-1}, x_k] \right) \Delta x_k = \Omega(f, \mathcal{P})$$

$$(1)$$

2) Пусть $\varepsilon > 0$ произвольно. Тогда из условий леммы следует, что

$$\exists \ \delta > 0 \mid \Omega(f, \mathcal{P}) < \frac{\varepsilon}{2} \ \forall \ \mathcal{P} \in B_{\delta}^*$$
 (2)

Рассмотрим произвольные разбиения $\mathcal{P}', \mathcal{P}'' \in B^*_{\delta}$ и соответствующие произвольные метки: $\xi' -$ для $\mathcal{P}', \xi'' -$ для \mathcal{P}'' . Кроме того, рассмотрим общее измельчение $\widetilde{\mathcal{P}} = \mathcal{P}' \cup \mathcal{P}''$ и соответствующую метку $\widetilde{\xi}$. Имеем:

$$\left| \sigma(\mathcal{P}', \xi') - \sigma(\mathcal{P}'', \xi'') \right| \leq \left| \sigma(\mathcal{P}', \xi') - \sigma(\widetilde{\mathcal{P}}, \widetilde{\xi}) \right| + \left| \sigma(\mathcal{P}'', \xi'') - \sigma(\widetilde{\mathcal{P}}, \widetilde{\xi}) \right| \stackrel{(1)}{\leq} 2\Omega(f, \mathcal{P}) \stackrel{(2)}{<} \varepsilon$$

Воспользовавшись критерием Коши, получим, что $f \in \mathcal{R}[a,b]$.

Пункт 4. Классы интегрируемых функций

Теорема 1. Пусть $f \in \mathcal{C}[a,b]$. Тогда $f \in \mathcal{R}[a,b]$.

 \blacktriangleright Согласно первой теореме Вейерштрасса, $f \in \mathcal{C}[a,b] \Rightarrow f \in \mathcal{B}[a,b]$. Кроме того, по теореме Кантора, непрерывность функции на отрезке влечёт равномерную непрерывность функции на этом отрезке. Это значит, что

$$\forall \varepsilon > 0 \exists \delta > 0 \mid \left| f(x') - f(x'') \right| < \frac{\varepsilon}{b-a} \ \forall \ x', x'' \in [a, b] \ \text{с условием} \ \left| x' - x'' \right| < \delta$$
 (1)

Фиксируем произвольное $\mathcal{P} \in B_{\delta}$. Так как $d(\mathcal{P}) < \delta$, то, используя (1), получаем, что $\omega(f, [x_{k-1}, x_k]) < \frac{\varepsilon}{b-a}, \ k = 1, \dots, n$. Рассмотрим $\Omega(f, \mathcal{P})$:

$$\Omega(f, \mathcal{P}) = \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k < \sum_{k=1}^{n} \frac{\varepsilon}{b - a} \Delta x_k = \frac{\varepsilon}{b - a} \sum_{k=1}^{n} \Delta x_k = \varepsilon$$

Тогда, согласно лемме из предыдущего пункта, имеем требуемое: $f \in \mathcal{R}[a,b]$.

Теорема 2. Пусть $f \in \mathcal{B}[a,b], f \in \mathcal{C}([a,b] \setminus \{x_1^*,\ldots,x_m^*\})$. Тогда $f \in \mathcal{R}[a,b]$.

1) Пусть $\varepsilon > 0$ — произвольно. Положим:

$$\delta_0 := \frac{1}{2} \min_{i,j=1,\dots,m,\ i \neq j} \left| x_i^* - x_j^* \right|$$
 (хотим добиться непересечения)

$$A := \bigcup_{i=1}^{m} (x_i^* - \delta_1, x_i^* + \delta_1), \ \delta_1 := \min\left\{\delta_0, \frac{\varepsilon}{16cm}\right\}, \ c := \sup_{[a,b]} |f|$$

$$A^* := [a,b] \setminus A$$
. Тогда $A^* = \bigcup_{l=1}^s \Delta_l$, где Δ_l — некоторый отрезок

2) Имеем: $f \in \mathcal{C}(A^*), A^*$ — обединение отрезков $\Rightarrow f$ равномерно непрерывна на A^* . Тогда для данного ε выберем $\delta_2 > 0$ такую, что:

$$\left|f(x')-f(x'')\right|<rac{arepsilon}{2(b-a)}\ orall\ x',x''\in A^*$$
 с условием $\left|x'-x''
ight|<\delta_2$

3) В лучших традициях, положим $\delta := \min\{\delta_1, \delta_2\}$ и рассмотрим произвольное разбиение $\mathcal{P} \in B^*_{\delta}$. Имеем:

$$\Omega(f, \mathcal{P}) = \sum_{k=1}^{n} \omega \left(f, [x_{k-1}, x_k] \right) \Delta x_k =: \Sigma' + \Sigma'',$$
 где $\Sigma' := \sum_{[x_{k-1}, x_k] \cap A = \varnothing} \omega \left(f, [x_{k-1}, x_k] \right) \Delta x_k$
$$\Sigma'' := \sum_{[x_{k-1}, x_k] \cap A \neq \varnothing} \omega \left(f, [x_{k-1}, x_k] \right) \Delta x_k$$

Оценим Σ' :

$$\Sigma' = \sum_{[x_{k-1}, x_k] \cap A = \varnothing} \underbrace{\omega(f, [x_{k-1}, x_k])}_{<\frac{\varepsilon}{2(b-a)}} \Delta x_k < \frac{\varepsilon}{2(b-a)} \underbrace{\sum \Delta x_k}_{\leq b-a} \leq \frac{\varepsilon}{2}$$

Оценим Σ'' :

$$\Sigma'' = \sum_{[x_{k-1}, x_k] \cap A \neq \varnothing} \underbrace{\omega(f, [x_{k-1}, x_k])}_{\leq 2c} \Delta x_k \leq 2c \sum \underbrace{\Delta x_k}_{<\delta \leq \delta_1} < 2c \underbrace{\sum_{\leq m \cdot 4\delta_1}}_{\leq m \cdot 4\delta_1} = 8cm \frac{\varepsilon}{16cm} = \frac{\varepsilon}{2}$$

Теорема 3. Пусть $f:[a,b]\to\mathbb{R}, f\uparrow(\downarrow)$. Тогда $f\in\mathcal{R}[a,b]$.

▶ Не ограничивая общности, $f \uparrow$, f(b) > f(a). Пусть $\varepsilon > 0$ — произвольно. Положим $\delta := \frac{\varepsilon}{f(b) - f(a)}$. Рассмотрим произвольное разбиение $\mathcal{P} \in B_{\delta}$. Имеем:

$$\Omega(f, \mathcal{P}) = \sum_{k=1}^{n} \underbrace{\omega(f, [x_{k-1}, x_k])}_{=f(x_k) - f(x_{k-1})} \underbrace{\Delta x_k}_{<\delta} < \delta \underbrace{\sum_{k=1}^{n} \left[f(x_k) - f(x_{k-1}) \right]}_{=f(b) - f(a)} = \underbrace{\frac{\varepsilon}{f(b) - f(a)}}_{=f(b) - f(a)} \left[f(b) - f(a) \right] = \varepsilon$$

Таким образом, согласно лемме 1, $f \in \mathcal{R}[a,b]$. \blacktriangleleft

Пункт 5. Критерий интегрируемости по Лебегу

Обозначение: Пусть I = (a, b). Тогда |I| := b - a.

Определение 1. Пусть имеется система интервалов (отрезков) $\{I_k, k \in \mathbb{N}\}$. Тогда:

$$\sum_{k=1}^{\infty} |I_k| := \lim_{n \to \infty} \sum_{k=1}^{n} |I_k|$$

Определение 2. Пусть $A \subset \mathbb{R}$. Тогда A имеет лебегову меру нуль $\stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \; \exists \; cucme$ ма интервалов $\{I_k\}$, удовлетворяющая следующим условиям:

- ullet $\{I_k\}$ не более чем счётна.
- $A \subset \bigcup \{I_k\}$
- $\sum |I_k| < \varepsilon$

Обозначение: $\mu(A) = 0$

Замечание:

- 1) В определении 2 можно брать отрезки.
- 2) \bigcup и \sum в определении означают $\bigcup_{k=1}^m$ и $\sum_{k=1}^m$, если $\{I_k\}$ конечна, $\bigcup_{k=1}^\infty$ и $\sum_{k=1}^\infty$, если $\{I_k\}$ счётна.

Пример:

1)
$$A=\{x_1,\ldots,x_m\}\Rightarrow \mu(A)=0.$$

• Пусть $\varepsilon>0$ — произвольно. Положим $I_k:=\left(x_k-\frac{\varepsilon}{3m},x_k+\frac{\varepsilon}{3m}\right)$. Тогда $A\subset\bigcup_{k=1}^mI_k,\;\sum_{k=1}^m|I_k|=m\frac{2\varepsilon}{3m}=\frac{2}{3}\varepsilon<\varepsilon$

2)
$$A = \{x_k, k \in \mathbb{N}\} \Rightarrow \mu(A) = 0.$$
 \blacktriangleright Снова пусть $\varepsilon > 0$ — произвольно. Положим $I_k := \left(x_k - \frac{\varepsilon}{2^{k+2}}, x_k + \frac{\varepsilon}{2^{k+2}}\right).$
Тогда $\sum_{k=1}^{\infty} |I_k| = \lim_{n \to \infty} \sum_{k=1}^n |I_k| = \lim_{n \to \infty} \sum_{k=1}^n \frac{\varepsilon}{2 \cdot 2^k} = \frac{\varepsilon}{2} \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2^k} = \frac{\varepsilon}{2} \cdot 1 < \varepsilon$

- 3) $\mu(A)=0 \stackrel{\text{в.г.}}{\Rightarrow} A$ счётно. Контрпримером является Канторово множество (см. Зорич, глава 4, параграф 1).
- 4) Пусть $[a,b] \subset \bigcup \{I_k\}$. Тогда $\sum |I_k| > b-a$.

 ▶ По индукции. База: $m=1, [a,b] \in (\alpha,\beta), \beta-\alpha > b-a$.

 Шаг: Пусть верно для m. Докажем для m+1. Пусть $[a,b] \subset \bigcup_{k=1}^{m+1}$.

 Без ограничения общности $I_1=(\alpha_1,\beta_1), a\in (\alpha_1,\beta_1)$. Кроме того, можем считать, что $b<\beta_1$. Рассмотрим $[\beta_1,b] \subset \bigcup_{k=2}^{m+1}$. Согласно предположению индукции, $\sum\limits_{k=2}^{m+1} < b-\beta_1$. Тогда $\sum\limits_{k=1}^{m+1} > \beta_1-\alpha_1+b-\beta_1=b-\alpha_1>b-a$.

 Таким образом, если $[a,b] \subset \mathbb{R}$, то $\mu(A) \neq 0$.

 ■
- 5) Пусть $f:[a,b] \to \mathbb{R}, f \uparrow (\downarrow)$. Тогда число точек разрыва f не более чем счётно.
 ▶ Доказательство этого утверждения не требуется в данном курсе ◀

Теорема 1 (Критерий Лебега). Пусть $f \in \mathcal{B}[a,b]$. Тогда $f \in \mathcal{R}[a,b] \Leftrightarrow$ \Leftrightarrow множество $E := \{x \in [a,b] \mid f \notin \mathcal{C}(x)\}$ имеет лебегову меру нуль $(\mu(E) = 0)$.

 \blacktriangleright Доказательство этой теоремы не требуется в данном курсе \blacktriangleleft

Пример:

- 1) $f \in \mathcal{C}[a,b]$
- 2) Функция Дирихле не является интегрируемой на любом отрезке [a,b], так как разрывна на всей области определения.

3) Функция Римана:

$$f(x):=\begin{cases} \frac{1}{n}, x\in\mathbb{Q}\ (x=\frac{m}{n},\frac{m}{n}-\text{несократимая дробь}, f(0)=1)\\ 0, x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$$

Функция Римана интегрируема на любом отрезке [a,b], так как множество точек разрыва (рациональные точки) счётно, а следовательно, имеет лебегову меру нуль.

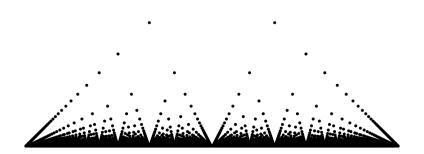


Рис. 2. Функция Римана на интервале (0,1).

Пункт 6. Два критерия интегрируемости функции на отрезке

Определение 1. Пусть $f \in \mathcal{B}[a,b]$, пусть \mathcal{P} — разбиение отрезка [a,b]. Обозначим $m_k := \inf_{[x_{k-1},x_k]} f$, $M_k := \sup_{[x_{k-1},x_k]} f$. Тогда $\boxed{$ ниженей и верхней суммами Дарбу называются соответственно:

$$s(f, \mathcal{P}) = s(\mathcal{P}) := \sum_{k=1}^{n} m_k \Delta x_k, \quad S(f, \mathcal{P}) = S(\mathcal{P}) := \sum_{k=1}^{n} M_k \Delta x_k$$

Определение 2.

$$\exists \lim_{d(\mathcal{P}) \to 0} s(\mathcal{P}) =: I_s \stackrel{\text{def}}{\Leftrightarrow} \exists \lim_{\mathbb{B}^*} s(\mathcal{P}) =: I_s$$

Аналогично, $\exists \lim_{d(\mathcal{P})\to 0} S(\mathcal{P}) =: I_S$

Теорема 1 (Критерий Дарбу интегрируемости f на отрезке).

Пусть
$$f \in \mathcal{B}[a,b]$$
. Тогда $f \in \mathcal{R}[a,b] \Leftrightarrow \Leftrightarrow (\exists \lim_{d(\mathcal{P})\to 0} s(\mathcal{P}) =: I_s) \land (\exists \lim_{d(\mathcal{P})\to 0} S(\mathcal{P}) =: I_s) \land (I_s = I_s)$

▶ Предварительное замечание:

$$s(\mathcal{P}) \leq \sigma(\mathcal{P},\xi) \leq S(\mathcal{P}) \; \forall \mathcal{P} \in \mathscr{P}, \; \forall$$
 метки ξ разбиения \mathcal{P}

1) \Rightarrow : Фиксируем произвольное $\varepsilon > 0$. Согласно критерию супремума,

$$\forall \, \mathcal{P} \in \mathscr{P} \, \exists \, \text{ метка } \xi' \mid f(\xi_k') > M_k - \frac{\varepsilon}{b-a} \, \forall \, k \in \{1,\dots,n\}$$
 Тогда $S(\mathcal{P}) = \sum_{k=1}^n M_k \Delta x_k < \sum_{k=1}^n f(\xi_k') + \frac{\varepsilon}{b-a} \sum_{k=1}^n \Delta x_k = \sigma(\mathcal{P},\xi') + \varepsilon$

По условию, $f \in \mathcal{R}[a,b] \Rightarrow \exists \int_a^b f(x) dx := I \Rightarrow$ для данного $\varepsilon \exists \delta > 0 \mid |\sigma(\mathcal{P},\xi) - I| < \varepsilon \, \forall \, (\mathcal{P},\xi) \in B_\delta$. Имеем:

$$I - \varepsilon < \sigma(\mathcal{P}, \xi) \le S(\mathcal{P}) < \sigma(\mathcal{P}, \xi') + \varepsilon < I + 2\varepsilon$$

Следовательно, $|S(\mathcal{P}) - I| < 2\varepsilon \ \forall \mathcal{P} \in B^*_{\delta}$

Применяя аналогичные рассуждения, получим, что $\lim_{d(\mathcal{P})\to 0} s(\mathcal{P}) = I$.

2) \sqsubseteq : Обозначим $I_S=I_s=:I$ Зафиксировав произвольное $\varepsilon>0,$ из условий теоремы будем иметь:

$$\exists \delta_1 > 0 \mid |S(\mathcal{P}) - I| < \varepsilon \ \forall \ \mathcal{P} \in B_{\delta_1}^* \Rightarrow S(\mathcal{P}) < I + \varepsilon \ \forall \ \mathcal{P} \in B_{\delta_2}^*$$
$$\exists \delta_2 > 0 \mid |s(\mathcal{P}) - I| < \varepsilon \ \forall \ \mathcal{P} \in B_{\delta_2}^* \Rightarrow s(\mathcal{P}) > I - \varepsilon \ \forall \ \mathcal{P} \in B_{\delta_2}^*$$

Положим $\delta := \min\{\delta_1, \delta_2\}$. Тогда $\forall (\mathcal{P}, \xi) \in B_{\delta}$:

$$I - \varepsilon < s(\mathcal{P}) \le \sigma(\mathcal{P}, \xi) \le S(\mathcal{P}) < I + \varepsilon \Rightarrow$$

$$\Rightarrow \exists \lim_{d(\mathcal{P}) \to 0} \sigma(\mathcal{P}, \xi) = I \Rightarrow \exists \int_{a}^{b} f(x) dx = I$$

Значит, $f \in \mathcal{R}[a,b]$. \blacktriangleleft

Теорема 2 (Предельный критерий интегрируемости по Риману). Пусть $f \in \mathcal{B}[a,b]$. Тогда $f \in \mathcal{R}[a,b] \Leftrightarrow \lim_{d(\mathcal{P}) \to 0} \Omega(f,\mathcal{P}) = 0$

▶ 1) [⇒]: Пусть $f \in \mathcal{R}[a,b] \stackrel{\mathrm{T1}}{\Rightarrow} \exists \lim_{d(\mathcal{P}) \to 0} \left[S(\mathcal{P}) - s(\mathcal{P}) \right] = I - I = 0.$

Ho
$$\Omega(f, \mathcal{P}) = \sum_{k=1}^{n} \underbrace{\omega(f, [x_{k-1}, x_k])}_{M_k - m_k} \Delta x_k \sum_{k=1}^{n} M_k \Delta x_k - \sum_{k=1}^{n} m_k \Delta x_k = S(\mathcal{P}) - s(\mathcal{P}).$$
 Значит,

$$\lim_{d(\mathcal{P})\to 0} \Omega(f, \mathcal{P}) = \lim_{d(\mathcal{P})\to 0} \left[S(\mathcal{P}) - s(\mathcal{P}) \right] = 0.$$

2) (⇐ : См. лемму. ◀

Следствие 1: $f \in \mathcal{R}[a,b] \Rightarrow |f| \in \mathcal{R}[a,b]$

 \blacktriangleright Так как $\forall x',x''\in[a,b]$ справедливо неравенство $\left\|x'|-|x''|\right|\leq|x'-x''|,$ то:

$$\omega(|f|, [x_{k-1}, x_k]) \leq \omega(|f|, [x_{k-1}, x_k]) \, \forall k \in \{1, \dots, n\} \Rightarrow$$

$$\Rightarrow 0 \leq \sum_{k=1}^{n} \omega(|f|, [x_{k-1}, x_k]) \Delta x_k \leq \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k = \Omega(f, \mathcal{P}) \stackrel{d(\mathcal{P}) \to 0}{\to} 0 \Rightarrow$$

$$\Rightarrow \lim_{d(\mathcal{P}) \to 0} \Omega(|f|, \mathcal{P}) = 0$$

Значит, $|f| \in \mathcal{R}[a,b]$. \blacktriangleleft

Замечание: Обратное, вообще говоря, неверно.

Следствие 2: $f \in \mathcal{R}[a,b], g:[a,b] \to \mathbb{R}, g \equiv f$ на $[a,b] \setminus A$, где $A = \{x_1^*,\dots,x_l^*\} \Rightarrow g \in \mathcal{R}[a,b]$, причём $\int\limits_a^b f(x)\,dx = \int\limits_a^b g(x)\,dx$

1) Докажем, что $g \in \mathcal{R}[a,b]$. Так как $f \in \mathcal{R}[a,b]$, то $f \in \mathcal{B}[a,b]$. Положим $c := \max\{\sup_{[a,b]} |f|, \max_{k=1,\dots,l} |g(x_k^*)|\}$. Тогда $|g(x)| \le c \ \forall x \in [a,b]$.

Пусть $\varepsilon > 0$ — произвольно. Тогда $\exists \delta_1 > 0 \mid \Omega(f, \mathcal{P}) < \frac{\varepsilon}{2} \ \forall \mathcal{P} \in B_{\delta}^*$. Кроме того, положим $\delta_2 := \frac{\varepsilon}{8cl}$. Как и раньше, положим $\delta := \min\{\delta_1, \delta_2\}$ и рассмотрим произвольное разбиение $\mathcal{P} \in B_{\delta}$. Имеем:

$$\Omega(g,\mathcal{P}) = \sum_{k=1}^n \omega\big(g,[x_{k-1},x_k]\big) \Delta x_k =: \Sigma' + \Sigma'',$$
 где $\Sigma' := \sum_{[x_{k-1},x_k]\cap A=\varnothing} \omega\big(g,[x_{k-1},x_k]\big) \Delta x_k, \quad \Sigma'' := \sum_{[x_{k-1},x_k]\cap A\neq\varnothing} \omega\big(g,[x_{k-1},x_k]\big) \Delta x_k$

Рассмотрим Σ' :

$$\Sigma' \le \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k = \Omega(\mathcal{P}) < \frac{\varepsilon}{2}$$

Оценим Σ'' :

$$\Sigma'' \le 2c \cdot \sum_{[x_{k-1}, x_k] \cap A \ne \varnothing} \delta \le 2c \cdot 2\delta l < \frac{\varepsilon}{2}$$

2) Докажем, что $\int_a^b f(x) dx = \int_a^b g(x) dx$. Согласно предыдущему пункту,

$$\exists \lim_{d(\mathcal{P}) \to 0} \sigma(g, \mathcal{P}, \xi) = I \overset{\xi'_k \notin A}{\Rightarrow} \exists \lim_{d(\mathcal{P}) \to 0} \sigma(g, \mathcal{P}, \xi') = \lim_{d(\mathcal{P}) \to 0} \sigma(f, \mathcal{P}, \xi) = I \blacktriangleleft$$

§2. Свойства интеграла Римана

<u>Пункт 1</u>. Линейность интеграла Римана. Интегрируемость произведения и частного

Теорема 1 (Линейность).

Пусть $f,g \in \mathcal{R}[a,b], \alpha,\beta \in \mathbb{R}$. Тогда $h(x) := \alpha f(x) + \beta g(x) \in \mathcal{R}[a,b],$ причём

$$\int_{a}^{b} h(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$
 (1)

Лемма 1. $f \in \mathcal{R}[a,b] \Rightarrow f^2 \in \mathcal{R}[a,b]$

▶ Так как $f \in \mathcal{R}[a,b]$, то $f \in \mathcal{B}[a,b]$. Положим $M := \sup_{[a,b]} |f|$. Тогда $\forall x', x'' \in [a,b]$ справедливо неравенство: $\left|f^2(x') - f^2(x'')\right| \leq 2M \left|f(x') - f(x'')\right|$. Поэтому

$$0 \le \Omega(f^2, \mathcal{P}) \le 2M \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k = \Omega(f, \mathcal{P}) \stackrel{d(\mathcal{P}) \to 0}{\longrightarrow} 0$$

Таким образом, $f^2 \in \mathcal{R}[a,b]$. \blacktriangleleft

Теорема 2. $f, g \in \mathcal{R}[a, b] \Rightarrow f \cdot g \in \mathcal{R}[a, b]$

$$\blacktriangleright f \cdot g = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right] \in \mathcal{R}[a,b] \blacktriangleleft$$

Лемма 2. $f \in \mathcal{R}[a,b], \, \big|f(x)\big| \geq m > 0 \,\, \forall x \in [a,b] \Rightarrow \frac{1}{f} \in \mathcal{R}[a,b]$

 $\blacktriangleright \forall x', x'' \in [x_{k-1}, x_k]$ для произвольного k справедливо неравенство:

$$\left| \frac{1}{f(x')} - \frac{1}{f(x'')} \right| \le \frac{\left| f(x') - f(x'') \right|}{m^2} \le \frac{\omega \left(f, [x_{k-1}, x_k] \right)}{m^2}$$
 Поэтому

$$0 \le \Omega\left(\frac{1}{f}, \mathcal{P}\right) \le \frac{1}{m^2} \sum_{k=1}^{n} \omega\left(f, [x_{k-1}, x_k]\right) \Delta x_k = \frac{1}{m^2} \Omega(f, \mathcal{P}) \stackrel{d(\mathcal{P}) \to 0}{\longrightarrow} 0$$

Таким образом, $\frac{1}{f} \in \mathcal{R}[a,b]$. \blacktriangleleft

Теорема 3. $f,g \in \mathcal{R}[a,b], |g(x)| \ge m > 0 \ \forall x \in [a,b] \Rightarrow \frac{f}{g} \in \mathcal{R}[a,b]$

▶ ◀

Пункт 2. Интегрируемость на подотрезке

Теорема 1. $f \in \mathcal{R}[a,b], [\alpha,\beta] \in [a,b] \Rightarrow f \in \mathcal{R}[\alpha,\beta]$

▶ Обозначим $\mathcal{P}_{[a,b]}$ разбиение отрезка [a,b]. $f \in \mathcal{R}[a,b] \Rightarrow Для$ фиксированного произвольного $\varepsilon > 0$:

$$\exists \delta > 0 \mid \Omega(f, \mathcal{P}_{[a,b]}) < \varepsilon \ \forall \mathcal{P}_{[a,b]} \in B_{\delta}^*[a,b]$$

Рассмотрим произвольное $\mathcal{P}_{[\alpha,\beta]} \in \mathscr{P}_{[\alpha,\beta]}$, а именно $\mathcal{P}_{[\alpha,\beta]} \in B^*_{\delta}[\alpha,\beta]$. К разбиению $\mathcal{P}_{[\alpha,\beta]}$ добавим точки $x'_1,\ldots,x'_m \in [a,b] \setminus [\alpha,\beta]$. Получили $\mathcal{P}'_{[a,b]} \in B^*_{\delta}[a,b]$. Тогда

$$0 \le \Omega(f, \mathcal{P}_{[\alpha,\beta]}) = \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k \le \Omega(f, \mathcal{P}'_{[a,b]}) < \varepsilon$$

Следовательно, $\Omega(f, \mathcal{P}_{[\alpha,\beta]}) \to 0$ при $d(\mathcal{P}_{[\alpha,\beta]}) \to 0$.

Теорема 2. Пусть $f:[a,c] \to \mathbb{R}, a < b < c$. Тогда $f \in \mathcal{R}[a,c] \Leftrightarrow$

$$\Leftrightarrow (f \in \mathcal{R}[a,b]) \land (f \in \mathcal{R}[b,c]) \land \left(\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx \quad (1)\right)$$

▶ 1) \implies : Пусть $f \in \mathcal{R}[a,c] \stackrel{\mathrm{T1}}{\Rightarrow} (f \in \mathcal{R}[a,b]) \land (f \in \mathcal{R}[b,c])$. Докажем (1). Выбрав произвольное $\varepsilon > 0$, имеем:

$$\exists \delta_1 > 0 \mid \left| \sigma_1(f, \mathcal{P}'_{[a,b]}, \xi') - \int_a^b f(x) \, dx \right| < \frac{\varepsilon}{2} \, \forall \, (\mathcal{P}'_{[a,b]}, \xi') \in B_{\delta_1}[a,b]$$

$$\exists \delta_2 > 0 \mid \left| \sigma_2(f, \mathcal{P}''_{[b,c]}, \xi'') - \int_b^c f(x) \, dx \right| < \frac{\varepsilon}{2} \, \forall \, (\mathcal{P}''_{[b,c]}, \xi'') \in B_{\delta_2}[b,c]$$

Как и ранее, положим $\delta := \min\{\delta_1, \delta_2\}$. Рассмотрим произвольное разбиение $(\mathcal{P}_{[a,c]}, \xi)B^{[}_{\delta}a, c]$ с условием: $\exists k_0 \in \{1, \ldots, n\} \mid b = x_{k_0}$. Тогда для соответствующей интегральной суммы $\sigma^*(\mathcal{P}_{[a,c]}, \xi)$ имеем:

$$\left| \sigma^*(\mathcal{P}_{[a,c]},\xi) - \left(\int_a^b f(x) \, dx + \int_b^c f(x) \, dx \right) \right| =$$

$$= \left| \left[\sigma_1(f, \mathcal{P}'_{[a,b]}, \xi') - \int_a^b f(x) \, dx \right] + \left[\sigma_2(f, \mathcal{P}''_{[b,c]}, \xi'') - \int_b^c f(x) \, dx \right] \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Следовательно, так как $f \in \mathcal{R}[a,c]$, то

$$\exists \lim_{d(\mathcal{P})\to 0} \sigma(\mathcal{P}_{[a,c]},\xi) = \lim_{d(\mathcal{P})\to 0} \sigma^*(\mathcal{P}_{[a,c]},\xi) = \int_a^c f(x) \, dx$$

 $2) \text{ } \exists (f \in \mathcal{R}[a,b]) \land (f \in \mathcal{R}[b,c]) \Rightarrow f \in \mathcal{B}[a,c] \Rightarrow \exists M < 0 \mid \forall x \in [a,c] \mid f(x) \mid < M.$ Выбрав произвольное $\varepsilon > 0$, имеем:

$$\exists \, \delta_1 > 0 \mid \, \Omega(f, \mathcal{P}'_{[a,b]}) < \frac{\varepsilon}{3} \, \forall \, \mathcal{P}'_{[a,b]} \in B^*_{\delta_1}[a,b]$$
$$\exists \, \delta_2 > 0 \mid \, \Omega(f, \mathcal{P}''_{[b,c]}) < \frac{\varepsilon}{3} \, \forall \, \mathcal{P}''_{[b,c]} \in B^*_{\delta_2}[b,c]$$

Теперь же положим $\delta := \min\{\delta_1, \delta_2, \frac{\varepsilon}{18M}\}$ и рассмотрим произвольное разбиение $\mathcal{P}_{[a,c]} \in B^*_{\delta}[a,c]$ с условием:

 $\diamond \exists k_0 \in \{1, \dots, n\} \mid b = x_{k_0}$. В этом случае

$$\Omega(f, \mathcal{P}_{[a,c]}) = \sum_{k=1}^{k_0} \omega(f, [x_{k-1}, x_k]) \Delta x_k + \sum_{k_0+1}^n \omega(f, [x_{k-1}, x_k]) \Delta x_k =$$

$$= \Omega(f, \mathcal{P}'_{[a,b]}) + \Omega(f, \mathcal{P}''_{[b,c]}) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon, \ \mathcal{P}_{[a,c]} = \mathcal{P}'_{[a,b]} \cup \mathcal{P}''_{[b,c]}$$

 $\Diamond \exists k_0 \in \{1, \dots, n\} \mid b \in (x_{k_0-1}, x_{k_0})$. Имеем в этом случае

$$\Omega(f, \mathcal{P}_{[a,c]}) = \left[\sum_{k=1}^{k_0-1} \omega(f, [x_{k-1}, x_k]) \Delta x_k + \omega(f, [x_{k_0-1}, b]) (b - x_{k_0-1}) \right] + \left[\sum_{k_0+1}^n \omega(f, [x_{k-1}, x_k]) \Delta x_k + \omega(f, [b, x_{k_0}]) (x_{k_0} - b) \right] + \left[\omega(f, [x_{k_0-1}, x_{k_0}]) \Delta x_{k_0} - \omega(f, [x_{k_0-1}, b]) (b - x_{k_0-1}) - \omega(f, [b, x_{k_0}]) (x_{k_0} - b) \right]$$

$$+ \left[\omega \left(f, [x_{k_0-1}, x_{k_0}] \right) \Delta x_{k_0} - \omega \left(f, [x_{k_0-1}, b] \right) (b - x_{k_0-1}) - \omega \left(f, [b, x_{k_0}] \right) (x_{k_0} - b) \right]$$

$$=: A_1 + A_2 + A_3 \text{ соответственно}$$

Оценим
$$A_1,A_2,A_3$$
: $|A_1|<\frac{\varepsilon}{3},\,|A_2|<\frac{\varepsilon}{3},\,|A_3|\leq 2M\delta+2M\delta+2M\delta=6M\delta<6M\frac{\varepsilon}{18M}=\frac{\varepsilon}{3}\Rightarrow \Omega(f,\mathcal{P}_{[a,c]})<\varepsilon$

Пример:

$$f(x) = sgn(x) \Rightarrow \int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx = 0$$

Определение 1. Пусть $f \in \mathcal{R}[a,b], c \in [a,b]$. Тогда

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx, \int_{c}^{c} f(x) dx := 0$$

Теорема 3. Пусть $f:[A,B]\to\mathbb{R}, f\in\mathcal{R}[A,B], a,b,c\in[A,B]$. Тогда

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

▶ См. теорему 2 и определение 1 ◀

Пункт 3. Интегрирование и неравенства

Лемма 1. Пусть $f \in \mathcal{R}[a,b], m \leq f(x) \leq M \ \forall x \in [a,b].$ Тогда

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a) \tag{1}$$

▶ $m(b-a) \le \sigma(\mathcal{P}, \xi) \le M(b-a)$. Переходя к пределу при $d(\mathcal{P}) \to 0$, получим (1). ◀

Следствие:
$$f \in \mathcal{R}[a,b], f \ge 0 \ \forall x \in [a,b] \Rightarrow \int\limits_a^b f(x) \, dx \ge 0$$

Теорема 1. Пусть $f, g \in \mathcal{R}[a, b], f(x) \geq g(x) \ \forall x \in [a, b].$ Тогда

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx \tag{2}$$

▶ Положим $h(x) := f(x) - g(x), h(x) \ge 0 \ \forall x \in [a,b].$ Тогда, используя следствие из леммы 1, получим

$$\int_{a}^{b} h(x) dx \ge 0 \Leftrightarrow \int_{a}^{b} (f(x) - g(x)) dx \ge 0 \Leftrightarrow \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx \ge 0$$

Таким образом, имеем (2). ◀

Следствие: $f \in \mathcal{R}[a,b] \Rightarrow |f| \in \mathcal{R}[a,b]$ (было доказано). Кроме того,

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| \, dx \tag{3}$$

▶ $\forall x \in [a,b]$: $-|f(x)| \le f(x) \le |f(x)|$. Тогда, согласно теореме 1,

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx,$$

что равносильно (3). ◀

Лемма 2.
$$f \in \mathcal{R}[a,b], f > 0 \ \forall x \in [a,b] \Rightarrow \int_a^b f(x) \, dx > 0$$
 (4)

▶ Исходя из леммы 1, $\int_{a}^{b} f(x) dx \ge 0$. Будем доказывать от противного: пусть (4)

неверно, т.е. $\int_a^b f(x) dx = 0$. Так как $f \in \mathcal{R}[a, b]$, то, по критерию Дарбу,

$$\lim_{d(\mathcal{P})\to 0} S(f,\mathcal{P}) = \lim_{d(\mathcal{P})\to 0} \sum_{k=1}^n M_k \Delta x_k = 0$$
, где $M_k = \sup_{[x_{k-1},x_k]} f$

Тогда, для $\varepsilon = b - a$, \exists разбиение $\mathcal{P}^{(1)}$ отрезка [a,b] с условием: $\sum_{k=1}^n M_k^{(1)} \Delta x_k^{(1)} < b - a$.

Значит, $\exists k_1 \mid M_{k_1}^{(1)} < 1$ (иначе $\forall k M_{k_1}^{(1)} \ge 1 \Rightarrow \sum_{k=1}^n M_k^{(1)} \Delta x_k^{(1)} \ge b - a$).

Обозначим за $[a_1,b_1] := [x_{k_1-1},x_{k_1}]$ и заметим, что

$$\underbrace{\int_{a_1}^{b_1} f(x) \, dx}_{\geq 0} = \underbrace{\int_{a}^{b} f(x) \, dx}_{=0} - \underbrace{\int_{a_1}^{a_1} f(x) \, dx}_{\geq 0} - \underbrace{\int_{b_1}^{b} f(x) \, dx}_{\geq 0} \Rightarrow \underbrace{\int_{a_1}^{b_1} f(x) \, dx}_{\geq 0} = 0$$

Далее применим рассуждение, использующее критерий Дарбу, для функции f на отрезке $[a_1,b_1]$, т.е.

$$\exists [a_2, b_2] \subset [a_1, b_1] \mid M^{(2)} := \sup_{[a_2, b_2]} f < \frac{1}{2} \left($$
для $\varepsilon = \frac{b-a}{2}\right)$

. . .

$$\exists \ [a_n,b_n] \subset [a_{n-1},b_{n-1}] \mid M^{(n)} := \sup_{[a_n,b_n]} f < \frac{1}{n} \left($$
для $\varepsilon = \frac{b-a}{n} \right)$

. . .

Построили систему вложенных отрезков. Следовательно, по лемме Кантора о вложенных отрезках, $\exists c \in [a_n, b_n] \ \forall n \in \mathbb{N}$. Кроме того, $c \in [a, b] \Rightarrow f(c) > 0$.

В итоге, $0 < f(c) \le M^{(n)} < \frac{1}{n} \, \forall \in \mathbb{N}$. Перейдём к пределу:

$$0 < f(c) \le \lim_{n \to \infty} \frac{1}{n} = 0$$
, т.е. $0 < f(c) \le 0$ — имеем противоречие. \blacktriangleleft

Теорема 2. Пусть $f, g \in \mathcal{R}[a, b], f(x) > g(x) \ \forall x \in [a, b].$ Тогда

$$\int_{a}^{b} f(x) \, dx > \int_{a}^{b} g(x) \, dx$$

▶ Рассматриваем h(x) := f(x) - g(x) и применяем лемму для h, используя линейность интеграла. ◀

Следствия:

1) $f \in \mathcal{C}[a,b], f \ge 0 \ \forall x \in [a,b], \int_a^b f(x) \, dx = 0 \Leftrightarrow f(x) = 0 \ \forall x \in [a,b].$

▶ Достаточно доказать, что $f(x) = 0 \ \forall x \in (a,b)$, тогда f(a) = f(b) = 0 в силу непрерывности. От противного: пусть $\exists x_0 \in [a,b] \mid f(x_0) > 0 \overset{f \in \mathcal{C}(x_0)}{\Rightarrow} \exists [\alpha,\beta] \subset [a,b] \mid f(x) > 0 \ \forall x \in [\alpha,\beta]$. Тогда, согласно лемме 2,

$$\int_{\alpha}^{\beta} f(x) dx > 0 \Rightarrow 0 = \int_{a}^{b} f(x) dx = \underbrace{\int_{a}^{\alpha} f(x) dx}_{\geq 0} + \underbrace{\int_{\alpha}^{\beta} f(x) dx}_{> 0} - \underbrace{\int_{\beta}^{b} f(x) dx}_{\geq 0} > 0$$

Получили противоречие. ◀

2)
$$f \in \mathcal{C}[a,b], \forall [\alpha,\beta] \subset [a,b], \int_{\alpha}^{\beta} f(x) dx = 0 \Leftrightarrow f(x) = 0 \ \forall x \in [a,b].$$

▶ От противного: $\exists x_0 \in [a,b] \mid f(x_0) > 0 \stackrel{f \in \mathcal{C}(x_0)}{\Rightarrow} \exists [\alpha,\beta] \subset [a,b] \mid f(x) > 0 \ \forall x \in [\alpha,\beta] \stackrel{\exists \mathbb{I}2}{\Rightarrow} \int_{\alpha}^{\beta} f(x) \, dx > 0$ — противоречие. ◀

Пункт 4. Теоремы о среднем

Теорема 1 (Первая теорема о среднем).

Пусть $f,g \in \mathcal{R}[a,b],g \overset{(\leq)}{\geq} 0 \ \forall x \in [a,b], M := \sup_{[a,b]} f, m := \inf_{[a,b]} f.$ Тогда $\exists \ \mu \in [m,M]$ такое, что

$$\int_{a}^{b} f(x)g(x) dx = \mu \int_{a}^{b} g(x) dx \tag{1}$$

▶ Не ограничивая общности, считаем, что $g \ge 0 \ \forall x \in [a,b]$. Имеем:

$$m g(x) \le f(x)g(x) \le Mg(x) \ \forall x \in [a, b] \stackrel{\mathrm{T1 \ n.3}}{\Rightarrow}$$

$$\stackrel{\text{T1 n.3}}{\Rightarrow} m \int_{a}^{b} g(x) \, dx \le \int_{a}^{b} f(x)g(x) \, dx \le M \int_{a}^{b} g(x) \, dx \tag{2}$$

Возможны два случая:

а)
$$\int_{a}^{b} g(x) dx = 0$$
. Но тогда, по следствию из Т1 п.3,

$$\left| \int_{a}^{b} f(x)g(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| g(x) \, dx \le \sup_{[a,b]} |f| \int_{a}^{b} g(x) \, dx = 0 \Rightarrow \int_{a}^{b} f(x)g(x) \, dx = 0$$

То есть (1) верно.

То есть (1) верно.
$$6) \int\limits_a^b g(x) \, dx > 0. \ \text{Тогда поделим (2) на это выражение: } m \leq \underbrace{\int\limits_a^b f(x)g(x) \, dx}_{=:\mu} \leq M$$

Имеем:
$$m \le \mu \le M$$
, $\int_a^b f(x)g(x) dx = \mu \int_a^b g(x) dx \Leftrightarrow (1)$.

Следствия:

1)
$$f \in \mathcal{R}[a,b], M := \sup_{[a,b]} f, m := \inf_{[a,b]} f \Rightarrow \exists \mu \in [m,M] \mid \int_a^b f(x) \, dx = \mu(b-a)$$

$$\blacktriangleright g = 1 \blacktriangleleft$$

2) Пусть $f \in \mathcal{C}[a,b], g \in \mathcal{R}[a,b], g \overset{(\leq)}{\geq} 0 \ \forall x \in [a,b].$ Тогда $\exists \ c \in [a,b]$ такое, что

$$\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$$
(3)

- ▶ Так как f непрерывна, то к ней применима 2-ая теорема Вейерштрасса, а значит $\exists x_1, x_2 \in [a,b] \mid f(x_1) = \max_{[a,b]} f =: M, f(x_2) = \min_{[a,b]} f =: m.$
- а)Если $f \equiv const$ на [a, b], то (3) верно.
- б) Если же это не так, то М>т, тогда из Т1 получаем, что

$$\exists \mu \in [m, M] \mid \int_{a}^{b} f(x)g(x) dx = \mu \int_{a}^{b} g(x) dx$$

- $\mu \in [m,M]$. Тогда по Т. о промежуточных значениях, $\exists c \in (a,b) \mid f(c) = \mu$
- $\mu = M \Rightarrow c := x_1$
- $\mu = m \Rightarrow c := x_2$

В итоге, имеем (3). ◀

3)
$$f \in \mathcal{C}[a,b] \Rightarrow \exists c \in [a,b] \mid \int_a^b f(x) dx = f(c)(b-a)$$

Теорема 2 (Вторая теорема о среднем).

Пусть $f \in \mathcal{R}[a,b], g \uparrow (\downarrow)$ на [a,b]. Тогда $\exists c \in [a,b]$ такое, что

$$\int_{a}^{b} f(x)g(x) dx = g(a) \int_{a}^{c} f(x) dx + g(b) \int_{c}^{b} f(x) dx$$

► Доказательство этой теоремы не требуется в рамках данного курса, заинтересованные могут посмотреть в Зориче ◀

§3. Интеграл Римана как функция верхнего (нижнего) предела

Пункт 1. Непрерывность интеграла по верхнему (нижнему) пределу

Определение 1. Пусть $f: \mathbb{X} \to \mathbb{R}$. Тогда f удовл. $\boxed{y$ словию Липшица на $\mathbb{X} \stackrel{\mathrm{def}}{\Leftrightarrow} \exists c > 0 \mid \left| f(x_2) - f(x_1) \right| \leq c \left| x_2 - x_1 \right| \ \forall x_1, x_2 \in \mathbb{X}$ Обозначается: $f \in \mathrm{Lip} \, \mathbb{X}$

Замечание: 1) $f \in \mathcal{C}[a,b] \cup \mathcal{D}(a,b), f' \in \mathcal{B}(a,b) \Rightarrow f \in \operatorname{Lip}[a,b]$

▶ Из теоремы Лагранжа следует, что

$$|f(x_2) - f(x_1)| = |f'(x_1 + \theta(x_2 - x_1))| |x_2 - x_1|, \theta \in (0, 1)$$

Положив $c := \sup_{(a,b)} |f'| \in \mathbb{R} \ (f' \in \mathcal{B}(a,b))$, получим условие Липшица. \blacktriangleleft

2) $f \in \text{Lip}[a,b] \stackrel{\text{в.г.}}{\Rightarrow} f \in \mathcal{D}(a,b)$ Например, f(x) = |x|, $f \notin \mathcal{D}(0)$, но $||x_2| - |x_1|| \le 1 \cdot |x_2 - x_1|$

Лемма 1. Пусть $f \in \text{Lip } \mathbb{X}, \mathbb{X} \subset \mathbb{R}$. Тогда f равномерно непрерывна на \mathbb{X} .

▶ Имеем:

$$\forall \varepsilon > 0 \ \left| f(x_2) - f(x_1) \right| \leq c \left| x_2 - x_1 \right| < \varepsilon \text{ при } \delta := \frac{\varepsilon}{c} \ \forall x_1, x_2 \in \mathbb{X} \text{ с усл. } |x_2 - x_1| < \delta$$

4

Замечание: f — равномерно непрерывна на $\mathbb{X} \stackrel{\text{в.г.}}{\Rightarrow} f \in \operatorname{Lip} \mathbb{X}$ Например, $f(x) = x^{\frac{1}{2}}, x \geq 0$

В итоге, $\mathcal{C}^1[a,b] \subset \operatorname{Lip}[a,b] \subset \mathcal{C}[a,b]$.

Теорема 1. Пусть $f \in \mathcal{R}[a,b], \ \Phi(x) := \int_{a}^{x} f(t) \, dt, \ \Psi(x) := \int_{x}^{b} f(t) \, dt, \ x \in [a,b].$

Тогда $\Phi, \Psi \in \operatorname{Lip}[a,b]$.

▶ 1) Докажем, что $\Phi \in \text{Lip}[a,b]$. Пусть x_1, x_2 — произв. с усл. $a \leq x_1 < x_2 \leq b$. Имеем:

$$\left| \Phi(x_2) - \Phi(x_1) \right| = \left| \int_a^{x_2} f(t) \, dt - \int_a^{x_1} f(t) \, dt \right| = \left| \int_{x_1}^{x_2} f(t) \, dt \right| \le \int_{x_1}^{x_2} \left| f(t) \right| \, dt \le M \, |x_2 - x_1| \,,$$
 где $M := \sup_{[a,b]} |f| \in \mathbb{R}$, так как $f \in \mathcal{R}[a,b] \Rightarrow |f| \in \mathcal{R}[a,b] \Rightarrow |f| \in \mathcal{B}[a,b]$

2) $\Psi \in \text{Lip}[a, b]$ аналогично. ◀

Следствие: Φ, Ψ — равномерно непрерывны на $[a, b], \Phi, \Psi \in \mathcal{C}[a, b]$.

Пункт 2. Дифференцируемость интеграла по верхнему (нижнему) пределу

Теорема 1. Пусть $f \in \mathcal{R}[a,b], f \in \mathcal{C}(x_0), x_0 \in [a,b].$

Тогда
$$\Phi \in \mathcal{D}(x_0), \Phi'(x_0) = f(x_0), \ \textit{rde } \Phi(x) := \int_a^x f(t) \, dt$$

▶ Имеем:

$$(*) := \left| \frac{\Phi(x) - \Phi(x_0)}{x - x_0} - \frac{f(x_0)(x - x_0)}{(x - x_0)} \right| = \frac{1}{|x - x_0|} \int_{x_0}^x \left[f(t) - f(x_0) \right] dt \le \frac{1}{|x - x_0|} \begin{cases} \int_{x_0}^x \left| f(t) - f(x_0) \right| dt, \text{ если } x > x_0 \\ \int_x^x \left| f(t) - f(x_0) \right| dt, \text{ если } x < x_0 \end{cases}$$
(1)

Ho
$$f \in \mathcal{C}(x_0) \Rightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; |f(t) - f(x_0)| < \varepsilon \; \forall t \in O_{\delta}(x_0)$$

Поэтому $\underline{\forall \; x \in O_{\delta}(x_0)}$ имеем (см. (1)): (*) $< \frac{\varepsilon |x - x_0|}{|x - x_0|} = \varepsilon \blacktriangleleft$

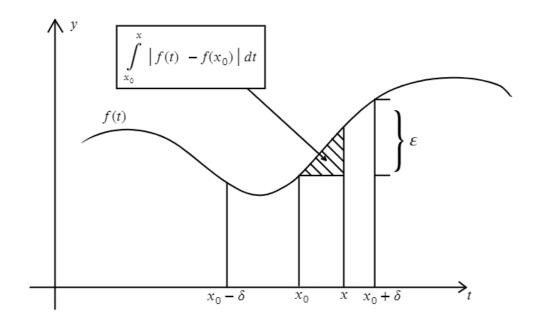


Рис. 3. Иллюстрация к теореме 1

Теорема 2. Пусть $f \in \mathcal{R}[a,b], f \in \mathcal{C}(x_0), x_0 \in [a,b].$

Тогда
$$\Psi \in \mathcal{D}(x_0), \Psi'(x_0) = -f(x_0), \ \textit{rde } \Psi(x) := \int_x^b f(t) \, dt$$

►
$$\Psi(x) := \int_{a}^{b} f(t) dt - \int_{a}^{x} f(t) dt = \underbrace{I}_{\text{число}} -\Phi(x) \Rightarrow \Psi'(x_0) = -\Phi'(x_0) = -f(x_0)$$
 ◀

Пример:

1)
$$\Phi(x) = \int_{0}^{\cos x} \sin \frac{1}{t} dt, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

Тогда по Т1 и по Т о производной композиции, $\Phi'(x) = \sin\left(\frac{1}{\cos x}\right)(-\sin x)$

$$2) \ F(x) := \int\limits_{x^{1/3}}^{x^{1/3}} e^{t^2} \, dt, \ x > 0$$
 Представим $F(x) = \int\limits_{0}^{x^{1/3}} e^{t^2} \, dt - \int\limits_{0}^{x^{1/2}} e^{t^2} \, dt.$ Тогда $F'(x) = \frac{1}{3} e^{x^{2/3}} x^{-2/3} - \frac{1}{2} e^x x^{-1/2}$

m.e. существует первообразная f на (a,b).

 $\int\limits_0^J\int\limits_0^{3}$ Теорема 3. Пусть $f\in\mathcal{C}(a,b)$. Тогда $\exists\;\Phi\in\mathcal{D}(a,b)\mid\Phi'(x)=f(x)\;\forall\,x\in(a,b),$

▶ Положим $\Phi(x) := \int\limits_{\frac{a+b}{2}}^{x} f(t)\,dt, \ x \in (a,b).$ Такая запись корректна, так как для любого отрезка внутри интервала f интегрируема. Кроме того, по Т1 $\Phi'(x) = f(x) \ \forall \, x \in (a,b).$ ◀

Теорема 4. Пусть $f \in \mathcal{C}[a,b]$. Тогда функция $\Phi(x) := \int_a^x f(t) \, dt, \ x \in [a,b],$ является первообразной f на (a,b), причём $\Phi \in \mathcal{D}[a,b]$ и $\Phi'(x) = f(x) \ \forall \ x \in [a,b]$ \blacktriangleright Следует из $\mathrm{T1}$. \blacktriangleleft

Формула Ньютона-Лейбница для интегрируемой функции

Пункт 1. Теорема об интеграле для функции, равной 0 почти всюду

Теорема 1. $f \in \mathcal{R}[a,b], f \equiv 0$ на $[a,b] \setminus A$, где $\mu(A) = 0 \Rightarrow$

 \Rightarrow интеграл не зависит от этих точек, т.е. $\int f(x) \, dx = 0$

 $\blacktriangleright f \in \mathcal{R}[a,b] \Rightarrow |f| \in \mathcal{R}[a,b] \Rightarrow$

$$\Rightarrow \exists \lim_{d(\mathcal{P})\to 0} s(|f|, \mathcal{P}) = \lim_{d(\mathcal{P})\to 0} \sum_{k=1}^n m_k \Delta x_k = \int_a^b |f(x)| dx, \text{ где } m_k = \inf_{[x_{k-1}, x_k]} |f|.$$

Ho
$$\forall [\alpha,\beta] \in [a,b] \inf_{[\alpha,\beta]} |f| = 0$$
, т.к. иначе $\exists [\alpha,\beta] \in [a,b] \mid \inf_{[\alpha,\beta]} |f| > 0 \Rightarrow$ $\Rightarrow |f(x)| > 0 \ \forall x \in [\alpha,\beta] \Rightarrow [\alpha,\beta] \subset A \Rightarrow \mu(A) \neq 0$ — противоречие с условием.

$$\Rightarrow |f(x)| > 0 \; \forall x \in [lpha, eta] \Rightarrow [lpha, eta] \subset A \Rightarrow \mu(A)
eq 0$$
 — противоречие с условием.

Тогда
$$s(|f|, \mathcal{P}) = 0$$
 и $\lim_{d(\mathcal{P}) \to 0} s(|f|, \mathcal{P}) = 0 \Rightarrow$

$$\Rightarrow 0 \le \left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| \, dx = 0 \Rightarrow \int_{a}^{b} f(x) \, dx = 0 \blacktriangleleft$$

Замечание: $f:[a,b]\to\mathbb{R}, f\equiv 0$ на $[a,b]\setminus A$, где $\mu(A)=0 \stackrel{\text{в.г.}}{\Rightarrow} f\in\mathcal{R}[a,b]$ Например, функция Дирихле.

Следствие:
$$f,g\in\mathcal{R}[a,b],f\equiv g$$
 на $[a,b]\setminus A$, где $\mu(A)=0\Rightarrow\int\limits_a^bf(x)\,dx=\int\limits_a^bg(x)\,dx$

Пример: Функция Римана $f \in \mathcal{R}[a,b]$ (см. стр. 17). Кроме того, $\int f(x) \, dx = 0$

Пункт 2. Формула Ньютона-Лейбница

Теорема 2 (Формула Ньютона-Лейбница). Пусть $f \in \mathcal{R}[a,b]$ и $\exists F \in \mathcal{C}[a,b]$ F — первообразная f на (a,b). Тогда

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: F(x) \Big|_{a}^{b}$$
 (1)

Кроме того, $\Phi(x) := \int f(t) \, dt$ обладает следующими свойствами: $\Phi(x) \in \mathcal{C}[a,b], \Phi$ — первообразная f на (a,b).

▶ 1) $\forall \mathcal{P}$ можем представить $F(b) - F(a) = \sum_{k=0}^{n} [F(x_k) - F(x_{k-1})].$

Но $F \in \mathcal{C}[x_{k-1}, x_k] \cap \mathcal{D}(x_{k-1}, x_k) \ \forall k$, а значит, по Т. Лагранжа, $\exists \xi_k \in [x_{k-1}, x_k] \mid F(x_k) - F(x_{k-1}) = f(\xi_k) \Delta x_k$. Следовательно, так как $f \in \mathcal{R}[a, b]$,

$$F(b)-F(a)=\sum_{k=0}^n f(\xi_k)\Delta x_k o \int\limits_a^x f(t)\,dt$$
 при $d(\mathcal{P}) o 0$

2) Рассмотрим $\Phi(x) := \int\limits_a^x f(t)\,dt = F(x) - F(a) \ \forall x \in [a,b] \ \text{по п.1}) \Rightarrow$ $\Rightarrow \Phi'(x) = F'(x) = f(x) \ \forall x \in [a,b].$ Таким образом, Φ — первообразная f на (a,b). (Непрерывность была доказана). \blacktriangleleft

Замечание:

- 1) $f \in \mathcal{R}[a,b] \stackrel{\text{в.г.}}{\Rightarrow} \exists F \in \mathcal{C}[a,b] \mid F$ первообразная f на (a,b). Например, функция Римана (см. стр. 17). Предположим, что $\exists F \in \mathcal{C}[a,b] \mid F$ первообразная f на (a,b). Тогда $\Phi(x) = \int\limits_a^x f(x) \, dx = 0$ (см. пункт 1 данного параграфа), причём, по Т1, $\Phi'(x) = f(x) \; \forall x \in [a,b]$. Значит, $f(x) = (0)' = 0 \; \forall x \in [a,b]$, однако это не так.
- 2) $\exists F \in \mathcal{C}[a,b] \mid F$ первообразная f на $(a,b) \not\stackrel{\text{в.г.}}{\Rightarrow} f \in \mathcal{R}[a,b].$ Например,

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases} \quad x \in [-1, 1]$$

- $F \in C[-1, 1]$
- $F'(x) = 2x \sin \frac{1}{x^2} \frac{2}{x} \cos \frac{1}{x^2}, x \neq 0$
- F'(0) = 0

При этом $f(x) := F'(x), x \in [-1,1]$ не является ограниченной $\Rightarrow f \notin \mathcal{R}[-1,1]$.

3) $f \in \mathcal{C}[a,b] \Rightarrow$ выполнены все условия для формулы Ньютона-Лейбница.

Пример:

$$f(x) = \begin{cases} \frac{d}{dx} \left(\frac{1}{1+2^{1/x}} \right), & x \neq 0 \\ 0, & x = 0 \end{cases} \quad x \in [-1, 1]$$

Во-первых, $f \in \mathcal{R}[a,b]$. Действительно, выпишем f явно:

$$f(x) = -\frac{1}{(1+2^{1/x})^2} \, 2^{1/x} \ln 2 \, \frac{-1}{x^2} = \frac{2^{1/x} \ln 2}{(1+2^{1/x})^2 x^2}, x \neq 0$$
 $f(0+) = 0, f(0-) = 0$ (показательная "круче") $\Rightarrow f \in \mathcal{C}[-1,1] \Rightarrow f \in \mathcal{R}[-1,1].$

Значит, можем рассмотреть $\int_{-1}^{1} f(x) dx$.

Однако $F(x)=\frac{1}{1+2^{1/x}}$ не является непрерывной в нуле, так как F(0+)=0, а F(0-)=1, поэтому формулу Ньютона-Лейбница применять напрямую нельзя. Определим

$$F_1(x) = \begin{cases} \frac{1}{1+2^{1/x}}, x > 0 \\ 0, x = 0 \end{cases} \quad F_2(x) = \begin{cases} \frac{1}{1+2^{1/x}}, x < 0 \\ 1, x = 0 \end{cases}$$

Тогда

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} \frac{d}{dx} F_1(x) dx + \int_{0}^{1} \frac{d}{dx} F_2(x) dx = F_2(x) \Big|_{-1}^{0} + F_1(x) \Big|_{0}^{1}$$

§5. Замена переменной и интегрирование по частям в определённом интеграле

Пункт 1. Замена переменной

Напоминание:

- $f \in \mathcal{D}[a,b] \stackrel{\text{def}}{\Leftrightarrow} (f \in \mathcal{D}(a,b)) \wedge (\exists f'_{+}(a) \in \mathbb{R}) \wedge (\exists f'_{-}(b) \in \mathbb{R})$
- $f \in \mathcal{C}^1[a,b] \stackrel{\text{def}}{\Leftrightarrow} (f \in \mathcal{D}[a,b]) \land (f' \in \mathcal{C}[a,b])$

Теорема 1. $f \in \mathcal{C}[a,b], \varphi \in \mathcal{C}^1[\alpha,\beta], \varphi([\alpha,\beta]) \subset [a,b],$ причём $\varphi(\alpha) = a, \varphi(\beta) = b.$ Тогда

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$
 (1)

▶ Так как $f \in \mathcal{C}[a,b]$, то \exists первообразная F для f на (a,b), причём $F \in \mathcal{C}[a,b] \Rightarrow$

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{2}$$

Положим $g(t) := f(\varphi(t)) \varphi'(t), t \in [\alpha, \beta]$. Имеем: $g \in \mathcal{C}[\alpha, \beta] \Rightarrow \exists$ первообразная G для g на $(\alpha, \beta), G \in \mathcal{C}[\alpha, \beta]$. Докажем, что $G(t) = F(\varphi(t))$. В самом деле, $G'(t) = F'(\varphi(t)) \varphi'(t) = f(\varphi(t)) \varphi'(t) = g(t)$. Поэтому

$$\int_{\alpha}^{\beta} g(t) dt = G(\beta) - G(\alpha) = F\left(\underbrace{\varphi(\beta)}_{=b}\right) - F\left(\underbrace{\varphi(\alpha)}_{=a}\right) = F(b) - F(a)$$

С учётом (2), это даёт требуемое утверждение (1). ◀

Пример:

1)
$$f \in \mathcal{C}[-a,a], a>0, f$$
 — нечётная $\Rightarrow I:=\int\limits_{-a}^a f(x)\,dx=0$

▶ Имеем:
$$I = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$
. Сделаем в I_1 замену:

$$\begin{cases} x = -t \\ dx = -dt \end{cases} \Rightarrow I_1 = -\int_a^0 \underbrace{f(-t)}_{-f(t)} dx = \int_a^0 f(x) dx = -\int_0^a f(x) dx \blacktriangleleft$$

2) Проведите похожие рассуждения, если f — чётная.

3)
$$f \in \mathcal{C}(\mathbb{R}), f-T$$
-периодическая, $T>0 \Rightarrow \int\limits_a^{a+T} f(x)\,dx = \int\limits_0^T f(x)\,dx \; \forall a \in \mathbb{R}$

Теорема 2. Пусть $f \in \mathcal{R}[a,b], \varphi \in \mathcal{D}[\alpha,\beta], \varphi' \in \mathcal{R}[\alpha,\beta], \varphi \uparrow \uparrow (\downarrow \downarrow)$ на $[\alpha,\beta], \varphi([\alpha,\beta]) \subset [a,b], \varphi(\alpha) = a, \varphi(\beta) = b$. Тогда

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

▶ Камынин, Том 1, стр. 238 ◀

Пункт 2. Интегрирование по частям

Теорема 1. $u, v \in \mathcal{D}[a, b], u', v' \in \mathcal{R}[a, b] \Rightarrow$

$$\Rightarrow \int_{a}^{b} u(x)v'(x) dx = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) dx \tag{1}$$

 $(1) \Leftrightarrow \int_{a}^{b} \left[\underbrace{\frac{d}{dx} (u(x)v(x))}_{-\cdot f(x)} \right] dx = u(x)v(x) \Big|_{a}^{b}$

Имеем: $f \in \mathcal{R}[a,b]$. Пусть $F(x) = u(x)v(x), x \in [a,b]$. Тогда $F'(x) = f(x), x \in [a,b], F \in \mathcal{C}[a,b]$ (т.к. $F \in \mathcal{D}[a,b]$). Использовав формулу Ньютона-Лейбница, получим (1). \blacktriangleleft

Определение 1. $1)f \in \mathcal{D}^1[a,b] \overset{\text{def}}{\Leftrightarrow} f \in \mathcal{D}[a,b]$ $2) \ n \geq 0, f \in \mathcal{D}^n[a,b] \overset{\text{def}}{\Leftrightarrow} \left(f \in \mathcal{D}^{n-1}[a,b]\right) \wedge \left(f^{(n-1)} \in \mathcal{D}[a,b]\right)$

Теорема 2 (Формула Тейлора с остаточным членом в интегральной форме).

Пусть $f \in \mathcal{D}^{n+1}[a,b], f^{(n+1)} \in \mathcal{R}[a,b], n \ge 0, x_0 \in (a,b)$. Тогда

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x, x_0) (2),$$
$$e \partial e \ r_n(x, x_0) := \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt, \ x \in [a, b]$$

- ▶ Будем проводить доказательство по индукции:
 - n=0: тогда $f\in\mathcal{D}[a,b], f'\in\mathcal{R}[a,b]\Rightarrow\int\limits_{x_0}^x f'(t)\,dt=f(x)-f(x_0)\Rightarrow$ \Rightarrow (2) для n=0, т.к. $f'\in\mathcal{R}[a,b], f'$ имеет первообразную f, причём $f\in\mathcal{C}[a,b].$
 - Пусть (2) верно для $n \ge 0$. Докажем для n+1. Рассмотрим $r_n(x,x_0)$:

$$r_n(x,x_0) := \frac{1}{n!} \int_{x_0}^x \underbrace{(x-t)^n \underbrace{f^{(n+1)}(t)}_{u(t)} dt} = |\text{ по частям }| =$$

$$= \frac{1}{n!} \left[-\frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \Big|_{x_0}^x + \frac{1}{n+1} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt \right] =$$

$$= \frac{1}{n!} \left[\frac{(x-x_0)^{n+1}}{n+1} f^{(n+1)}(x_0) + \frac{1}{n+1} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt \right] =$$

$$= \frac{f^{(n+1)}(x_0)}{(n+1)!} (x-x_0)^{n+1} + \underbrace{\frac{1}{(n+1)!} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt}_{=r_{n+1}(x,x_0)}$$

Следовательно, представление (2) верно для n+1. \blacktriangleleft

Замечание: $f \in \mathcal{C}^{n+1}[a,b] \Rightarrow$ формула (2) $\stackrel{\mathrm{T}\text{ o среднем}}{\Rightarrow}$ формула Тейлора с остаточным членом в форме Лагранжа.

§6. Несобственные интегралы с бесконечными пределами

Пункт 1. Определение. Критерий Коши

Определение 1. Пусть $f \in \mathcal{R}[a,b] \ \forall b > a$. Тогда

1)
$$\int_{a}^{+\infty} f(x) dx := \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$
 (1)

- 2) Если предел (1) существует, то говорят, что $\int\limits_a^{+\infty}f(x)\,dx$ <u>сходится</u>
- 3) Если же предел (1) не существует, то говорят, что $\int\limits_a^{+\infty} f(x) \, dx$ расходится

4)
$$f$$
 интегрируема по Риману в несобственном смысле $\stackrel{\text{def}}{\Leftrightarrow}$ $\int\limits_{a}^{+\infty} f(x)\,dx\,$ сходится

Замечание:

1) Пусть $f \in \mathcal{R}[a,b], f \geq 0$ на [a,b]. Тогда можно использовать следующие обозначения:

• Если
$$\int_{a}^{+\infty} f(x) dx$$
 сходится, то пишем $\int_{a}^{+\infty} f(x) dx < \infty$

• Если же
$$\int\limits_a^{+\infty} f(x)\,dx$$
 расходится, то пишем $\int\limits_a^{+\infty} f(x)\,dx = \infty$

2) Пусть
$$\int\limits_a^{+\infty} f(x)\,dx$$
 сходится. Тогда $\exists \lim\limits_{c\to +\infty} \int\limits_c^{+\infty} f(x)\,dx = 0$

$$6) \int_{c}^{+\infty} f(x) dx = \int_{a}^{+\infty} f(x) dx - \int_{a}^{c} f(x) dx \xrightarrow{c \to +\infty} \int_{a}^{+\infty} f(x) dx - \int_{a}^{+\infty} f(x) dx = 0 \blacktriangleleft$$

Пример: $f(x) = \frac{1}{x^{\alpha}}, x \ge 1, \alpha \in \mathbb{R}$. Тогда

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} < \infty, \text{ если } \alpha > 1 \\ = \infty, \text{ если } \alpha \le 1 \end{cases}$$

▶ а) Пусть $\alpha > 1$. Имеем:

$$\int\limits_{1}^{b} \frac{1}{x^{\alpha}} \, dx = \frac{1}{1-\alpha} x^{1-\alpha} \bigg|_{1}^{b} = \frac{1}{1-\alpha} \bigg[\overbrace{b^{-\alpha+1}}^{b \to +\infty} - 1 \bigg] = \frac{1}{\alpha-1} \Rightarrow \int\limits_{1}^{+\infty} \frac{1}{x^{\alpha}} \, dx = \frac{1}{\alpha-1}$$

б) Пусть $\alpha = 1$. Тогда:

$$\int\limits_{1}^{b} \frac{dx}{x} = \ln x \bigg|_{1}^{b} = \ln b \overset{b \to +\infty}{\to} + \infty \Rightarrow \int\limits_{1}^{+\infty} \frac{1}{x^{\alpha}} \, dx - \text{расходится}$$

б) Пусть $\alpha < 1$. Тогда:

$$\int\limits_{1}^{b} \frac{1}{x^{\alpha}} \, dx = \frac{1}{1-\alpha} \bigg[b^{1-\alpha} - 1 \bigg] \overset{b \to +\infty}{\to} + \infty \Rightarrow \int\limits_{1}^{+\infty} \frac{1}{x^{\alpha}} \, dx - \text{расходится}$$

Определение 2. Пусть $f \in \mathcal{R}[a,b] \ \forall b < a$. Тогда

1)
$$\int_{-\infty}^{a} f(x) dx := \lim_{b \to -\infty} \int_{b}^{a} f(x) dx$$
 (2)

- 2) Если предел (2) существует, то говорят, что $\int\limits_{-\infty}^a f(x) \, dx$ <u>сходится</u>
- 3) Если же предел (2) не существует, то говорят, что $\int\limits_{-\infty}^a f(x)\,dx$ расходится
- 4) f $\boxed{$ интегрируема по Риману в несобственном смысле $] \stackrel{\text{def}}{\Leftrightarrow} \int_{-\infty}^{a} f(x) \, dx \, \, cxo \partial umcs$

Определение 3. Пусть $f \in \mathcal{R}[a,b] \, \forall a < b$. Тогда $\int_{-\infty}^{+\infty} f(x) \, dx \, \operatorname{cxodumcs} \stackrel{\text{def}}{\Leftrightarrow} \left(\int_{-\infty}^{0} f(x) \, dx \, \operatorname{cxodumcs} \right) \wedge \left(\int_{0}^{+\infty} f(x) \, dx \, \operatorname{cxodumcs} \right),$

причём
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx$$

Теорема 1 (Критерий Коши). Пусть $f \in \mathcal{R}[a,b] \ \forall b>a$. Тогда

$$\int\limits_{a}^{+\infty} f(x)\,dx\,\, cxo\partial umc \, s \, \Leftrightarrow \forall \, \varepsilon > 0 \,\, \exists \, B > a \,\, | \left| \int\limits_{b_{1}}^{b_{2}} f(x)\,dx \right| < \varepsilon \,\, \forall \, b_{1},b_{2} > B$$

▶ Положим $F(x):=\int\limits_a^x f(t)\,dt, x\geq a.$ Тогда $\int\limits_a^{+\infty} f(x)\,dx$ сходится \Leftrightarrow $\exists\lim_{x\to +\infty} F(x).$ Согласно критерию Коши для F(x) при $x\to +\infty,$

$$\exists \lim_{x \to +\infty} F(x) \Leftrightarrow \forall \varepsilon > 0 \ \exists B > a \ | |F(x_1) - F(x_2)| < \varepsilon \ \forall x_1, x_2 > B$$
 (*)

Но

$$|F(x_1) - F(x_2)| = \left| \int_a^{x_2} f(x) dx - \int_a^{x_1} f(x) dx \right| = \left| \int_{b_1}^{b_2} f(x) dx \right|$$

С учётом (*), это и есть требуемое утверждение. ◀

Определение 4. Пусть $f \in \mathcal{R}[a,b] \; \forall b>a$. Тогда

1)
$$\int_{a}^{+\infty} f(x) dx \ \underline{cxodumcs \ abconomno} \stackrel{\text{def}}{\Leftrightarrow} \int_{a}^{+\infty} |f(x)| \ dx < \infty$$

2)
$$\int_{a}^{+\infty} f(x) dx$$
 сходится условно $\stackrel{\text{def}}{\Leftrightarrow}$

Теорема 2.
$$\int\limits_{a}^{+\infty}f(x)\,dx\,\,cxo\partial umcs\,\,aбсолютно\Rightarrow\int\limits_{a}^{+\infty}f(x)\,dx\,\,cxo\partial umcs.$$

▶ Пусть
$$\int_{a}^{+\infty} |f(x)| dx$$
 сходится. Тогда, по Т1,

$$\forall \varepsilon > 0 \exists B > a \mid \int_{b_1}^{b_2} |f(x)| dx < \varepsilon \, \forall b_1, b_2 > B, b_2 > b_1 \Rightarrow$$

$$\Rightarrow \left| \int_{b_1}^{b_2} |f(x)| dx \right| \leq \int_{b_1}^{b_2} |f(x)| dx < \varepsilon \, \forall b_1, b_2 > B, b_2 > b_1$$

Применив критерий Коши в обратную сторону, получим утверждение теоремы. ◀

Пример:
$$\int_{1}^{+\infty} \frac{\sin x}{x} dx$$
 сходится условно (доказательство ниже).

Свойства:

- 1) Линейность
- 2) Замена переменной
- 3) По частям
- ▶ Зорич, стр. 460 ◀

Пункт 2. Признаки сходимости

Теорема 1 (Признак сравнения/мажорантный).

Пусть $f, g: [a, +\infty) \to \mathbb{R}, f, g \in \mathcal{R}[a, b] \ \forall b > a, 0 \le f(x) \le g(x) \ \forall x \ge a$ Тогда:

1)
$$\int_{a}^{+\infty} g(x) \, dx < \infty \Rightarrow \int_{a}^{+\infty} f(x) \, dx < \infty$$

2)
$$\int_{a}^{+\infty} f(x) dx = \infty \Rightarrow \int_{a}^{+\infty} g(x) dx = \infty$$

▶ 1) Пусть
$$G(x) := \int_{a}^{x} g(t) dt, x \ge a$$
. Тогда, т.к. $\int_{a}^{+\infty} g(x) dx < \infty$, то $\exists \lim_{x \to +\infty} G(x)$,

и, т.к. $g(x) \ge 0 \ \forall x \ge a, G \uparrow$ на $[a, +\infty)$. Следовательно, по теореме Вейерштрасса, $\exists \, M>0 \mid 0 \le G(x) \le M \ \forall x \ge a.$

Теперь положим $F(x) := \int f(t) \, dt, x \ge a$, тогда, т.к. $f(x) \le g(x) \; \forall x \ge a$, имеем:

$$F(x) \leq G(x) \ \forall x \geq a \Rightarrow F(x) \leq M \ \forall x \geq a \ \text{и} \ F \uparrow \text{на } [a, +\infty).$$

По теореме Вейерштрасса, $\exists \lim_{x \to +\infty} F(x) \Rightarrow \int f(x) dx$ сходится.

2) Обращённое утверждение (от противного).

Пример:
$$\int_{1}^{+\infty} \underbrace{\sin x \cdot x^{n} \cdot e^{-x^{2}}}_{=:f(x)} dx, n \ge 0$$

Имеем $|f(x)| \le \frac{1}{x^2} x^{n+2} e^{-x^2} \le \frac{1}{x^2}$, если заметить, что $\lim_{x \to +\infty} x^{n+2} e^{-x^2} = 0 \Rightarrow \exists \ B > 0 \mid x^{n+2} e^{-x^2} \le 1 \ \forall \, x > B.$

Применив T1 и вспомнив пример из пункта 1, получаем: $\int |f(x)| dx$ сходится, а

значит сходится и $\int f(x) dx$.

Теорема 2. Пусть $f, g \in \mathcal{R}[a, b] \ \forall b > a, f, g \geq 0$ на $[a, +\infty)$ и $f \sim g$ при $x \to +\infty$. Тогда $\int_a^{+\infty} f(x) \, dx$ и $\int_a^{+\infty} g(x) \, dx$ сходятся или расходятся одновременно.

► T1+определение эквивалентности <</p>

Теорема 3 (Признак Дирихле). Пусть $f, g: [a, +\infty) \to \mathbb{R}, f, g \in \mathcal{R}[a, b] \ \forall b > a,$ причём:

1) функция
$$F(x) := \int\limits_a^x f(t)\,dt, x \geq a$$
 ограничена

2) $g\downarrow 0$ (монотонно стремится κ 0) npu $x\to +\infty$

Тогда
$$\int_{a}^{+\infty} f(x)g(x) dx$$
 сходится.

▶ Исходя из условий теоремы, имеем:

1)
$$\Rightarrow \exists M > 0 \mid |F(x)| < M \ \forall x \ge a$$

2) $\Rightarrow \forall \varepsilon > 0 \ \exists B > 0 \mid |g(x)| < \frac{\varepsilon}{4M} \ \forall x > B$

Тогда, согласно критерию Коши и Т2 о среднем,

$$\left| \int_{b_1}^{b_2} f(x)g(x) \, dx \right| = \left| g(b_1) \int_{b_1}^{c} f(x) \, dx + g(b_2) \int_{c}^{b_2} f(x) \, dx \right|$$
 для некоторого $c \in (b_1, b_2)$

Заметим, что

$$\left| \int_{b_1}^{c} f(x) \, dx \right| = \left| \int_{a}^{c} f(x) \, dx - \int_{a}^{b_1} f(x) \, dx \right| \le \left| \int_{a}^{c} f(x) \, dx \right| + \left| \int_{a}^{b_1} f(x) \, dx \right| \le 2M$$

Поэтому

$$\left| \int_{b_1}^{b_2} f(x)g(x) \, dx \right| \leq \underbrace{\left| g(b_1) \right| 2M}_{<\frac{\varepsilon}{4M}} + \underbrace{\left| g(b_2) \right| 2M}_{<\frac{\varepsilon}{4M}} < \varepsilon \, \forall b_1, b_2 > B$$

По критерию Коши, $\int_{a}^{+\infty} f(x)g(x) dt$ сходится. \blacktriangleleft

Пример:

1)
$$\int_{a}^{+\infty} \sin \frac{1}{x^2} dx$$
, где $a = \sqrt{\frac{2}{\pi}}$

Т. к.
$$\sin \frac{1}{x^2} \sim \frac{1}{x^2}$$
, а $\int_{0}^{+\infty} \frac{dx}{x^2}$ сходится, то, по Т2, интеграл 1) сходится.

2) Классичесий пример:
$$I_{\alpha} = \int\limits_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} \, dx = \left\{ \begin{array}{l} \text{сходится абсолютно, если } \alpha > 1 \\ \text{сходится условно, если } 0 < \alpha \leq 1 \end{array} \right.$$

▶ 1. Для
$$\boxed{\alpha > 1}$$
 имеем: $\frac{|\sin x|}{x^{\alpha}} \le \frac{1}{x^{\alpha}}$.

Тогда, т.к.
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$$
 сходится при $\alpha > 1$, то по T1, сходится и $\int_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$

2.а)
$$I_{\alpha}$$
 сходится при $\alpha > 0$. В самом деле, рассмотрим

$$F(x) := \int\limits_{1}^{+\infty} \sin x \, dx, x \geq 1, g(x) := \frac{1}{x^{\alpha}}, x \geq 1. \text{Тогда} \left| F(x) \right| = \left| \cos 1 - \cos x \right| \leq 2, \text{ а}$$
 $g \downarrow 0$ при $x \to +\infty$. Следовательно, по Т3, I_{α} сходится.

2.6)
$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$$
 расходится при $0 < \alpha \le 1$

Имеем:
$$|\sin x| \le 1 \Rightarrow \sin x \ge \sin^2 x$$
. Но интеграл

$$\int\limits_{1}^{b} \frac{\sin^2 x}{x^{\alpha}} \ dx = \frac{1}{2} \int\limits_{1}^{b} \frac{1}{x^{\alpha}} \ dx - \frac{1}{2} \int\limits_{1}^{b} \frac{\cos 2x}{x^{\alpha}} \ dx$$
 расходится, т.к. расходится первое

слагаемое. Значит, по Т1, расходится и
$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$$
. \blacktriangleleft

Замечание:
$$\int\limits_a^{+\infty} f(x)\,dx$$
 сходится $\stackrel{\text{в.г.}}{\Rightarrow} \int\limits_a^{+\infty} f^2(x)\,dx$ сходится

Например,
$$f(x) = \frac{\sin x}{\sqrt{x}}$$
. В этом случае $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ сходится по признаку Дирихле,

$$\int_{1}^{+\infty} \frac{\sin^2 x}{x} dx$$
 расходится.

§7. Несобственные интегралы от неограниченных функций

Пункт 1. Определение. Критерий Коши

Определение 1. Пусть $f \in \mathcal{R}[a+\varepsilon,b] \ \forall \varepsilon \in (0,b-a)$. Тогда

1)
$$\int_a^b f(x) dx := \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^b f(x) dx$$
, если этот lim существует.

2) 3) Аналогично прошлому параграфу даются определения сходимости/расходимости в несобственном смысле.

Определение 2. Пусть $f \in \mathcal{R}[a,b-\varepsilon] \ \forall \varepsilon \in (0,b-a)$. Тогда

1)
$$\int_a^b f(x) dx := \lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx$$
, echu əmom lim cywecmeyem.

2) 3) Аналогично прошлому параграфу даются определения сходимости/расходимости в несобственном смысле и в этом случае.

Определение 3. Пусть $f \in \mathcal{R}[a,b-\varepsilon_1] \ \forall \ \varepsilon_1 \in (0,b-a), f \in \mathcal{R}[b+\varepsilon_2,c] \ \forall \ \varepsilon_2 \in (0,c-b)$ Тогда

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx,$$

если оба интеграла справа существуют.

Замечание:

- 1) Пусть $f \ge 0$ на [a, b]. Тогда можно использовать следующие обозначения:
 - Если $\int_a^b f(x) dx$ сходится, то пишем $\int_a^b f(x) dx < \infty$
 - Если же $\int_a^b f(x) dx$ расходится, то пишем $\int_a^b f(x) dx = \infty$

2)
$$\exists \int_{a}^{b} f(x) dx \Rightarrow \exists \int_{a}^{a+\varepsilon} f(x) dx$$
, причём $\int_{a}^{a+\varepsilon} f(x) dx \to 0$ при $\varepsilon \to +0 \blacktriangleright \cdots \blacktriangleleft$

- 3) Пусть $f \in \mathcal{R}[a,b]$. Тогда $\int_{a+\varepsilon}^{b} f(x) \, dx \to \int_{a}^{b} f(x) \, dx$ при $\varepsilon \to +0$. (Непрерывность интеграла Римана по нижнему пределу)
- 4) Пусть $f:(a,b] \to \mathbb{R}, g \in \mathcal{R}[a,b], f \equiv g$ на $[a,b] \Rightarrow \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x) \, dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} g(x) \, dx = \int_{a}^{b} f(x) \, dx$

В таком случае говорят, что $\exists \int_{a}^{b} f(x) dx$ в собственном смысле (как интеграл

Римана).

Например, $\int_{0}^{1} \frac{\sin x}{x} dx$, $\int_{0}^{1} \sin \frac{1}{x} dx$ можно доопределить.

Пример: $f(x) = \frac{1}{r^{\alpha}}, x > 0, \alpha \in \mathbb{R}$. Тогда

$$\int\limits_0^1 \frac{1}{x^\alpha} \, dx = \begin{cases} <\infty, \, \text{если } \alpha < 1 \\ =\infty, \, \text{если } \alpha \geq 1 \end{cases}$$

▶ см. случай для бесконечных пределов. ◀

Теорема 1 (Критерий Коши). Пусть $f \in \mathcal{R}[a+\varepsilon,b] \ \forall \ \varepsilon \in (0,b-a)$. Тогда

$$\exists \int_{a}^{b} f(x) dx \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ | \left| \int_{x_{1}}^{x_{2}} f(x) dx \right| < \varepsilon \ \forall x_{1}, x_{2} \in (a, a + \delta)$$

▶ см. ранее ◀

Определение 4. Пусть $f \in \mathcal{R}[a,b] \; \forall b>a$. Тогда

1)
$$\int_{a}^{b} f(x) dx$$
 сходится абсолютно $\stackrel{\text{def}}{\Leftrightarrow} \int_{a}^{b} |f(x)| dx$ существует

2)
$$\int_a^b f(x) dx$$
 сходится условно $\stackrel{\text{def}}{\Leftrightarrow}$ $\left(\int_a^b f(x) dx \ cyществует\right) \wedge \left(\int_a^b |f(x)| \ dx \ не \ cyществует\right)$

Замечание: $\int\limits_a^b f(x)\,dx$ сходится абсолютно $\Rightarrow \int\limits_a^b f(x)\,dx$ сходится.

▶ Использовать критерий Коши ◀

Свойства:

- 1) Линейность
- 2) Замена переменной
- 3) По частям

Пример:
$$\int_{0}^{1} \frac{\sin \frac{1}{x}}{x} dx$$
 сходится.

Сделав замену
$$x=\frac{1}{y},dx=-\frac{dy}{y^2},$$
 получим $\int\limits_{\varepsilon}^1 \frac{\sin\frac{1}{x}}{x}\,dx=\int\limits_1^{1/\varepsilon} \frac{\sin y}{y}\,dy,$ который при $\varepsilon \to +0(1/\varepsilon \to +\infty)$ сходится.

Пункт 2. Признаки сходимости

Сформулируйте и докажите признаки сходимости, опираясь на пункт 2 параграфа 6.

Пример:
$$\int_{0}^{\pi/2} \frac{dx}{(\sin x)^{1/2} \sin(\pi/2 - x)}$$
 расходится. Имеем:

$$\int_{0}^{\pi/2} f(x) dx = \int_{0}^{\pi/4} f(x) dx + \int_{\pi/4}^{\pi/2} f(x) dx =: I_1 + I_2$$

1)
$$I_1$$
 сходится, т.к. при $x \to 0$ $f(x) \sim \frac{1}{x^{1/2}}, \int\limits_0^{\pi/4} \frac{dx}{x^{1/2}}$ сходится.

2)
$$I_2$$
 расходится, т.к. при $x \to \pi/2 - 0$ $f(x) \sim \frac{1}{\pi/2 - x}$, $a \int_{\pi/4}^{\pi/2} \frac{dx}{\pi/2 - x}$ расходится.

Пункт 3. Несобственный интеграл в смысле главного значения (по Коши)

Рассмотрим интеграл
$$\int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x} =: I_1 + I_2$$

$$I_1 = \lim_{\varepsilon_1 \to +0} \int_{-1}^{-\varepsilon_1} \frac{dx}{x} = \lim_{\varepsilon_1 \to +0} \ln \varepsilon_1 = -\infty; \ I_2 = \lim_{\varepsilon_2 \to +0} \int_{\varepsilon_2}^{1} \frac{dx}{x} = \lim_{\varepsilon_2 \to +0} -\ln \varepsilon_2 = +\infty$$

$$I_1 + I_2 = \ln \frac{\varepsilon_1}{\varepsilon_2}$$

Определение 1. Пусть $f:[a,b)\cup(b,c]\to\mathbb{R}, f\in\mathcal{R}[a,b-\varepsilon],\ f\in\mathcal{R}[b+\varepsilon,c]$ $\forall\,\varepsilon\in(0,\min\{b-a,c-b\}).$ Тогда

(Valeur principale) V.p.
$$\int_{a}^{c} f(x) dx = \lim_{\varepsilon \to +0} \left[\int_{a}^{b-\varepsilon} f(x) dx + \int_{b+\varepsilon}^{c} f(x) dx \right],$$

если этот предел существует, а его значение в таком случае называется интегралом в смысле $\[$ главного значения $\]$.

Пример:
$$V.p. \int_{-1}^{1} \frac{dx}{x} = 1$$

§8. Некоторые приложения интеграла

Пункт 1. Аддитивная функция отрезка

Определение 1. Функция $I:(\alpha,\beta)\in [a,b]\times [a,b]\to I(\alpha,\beta)\in \mathbb{R}$ называется $[a\partial\partial umu$ вной функцией отрезка, если она удовлетворяет условию:

$$\forall \alpha, \beta, \gamma \in [a, b] \ I(\alpha, \gamma) = I(\alpha, \beta) + I(\beta, \gamma)$$

Пример: $f \in \mathcal{R}[a,b]$. $I(\alpha,\beta) := \int\limits_{\alpha}^{\beta} f(x) \, dx, \alpha, \; \beta \in [a,b]$.

Свойства:

1)
$$I(\alpha, \alpha) = 0 \triangleright I(\alpha, \alpha) = I(\alpha, \alpha) + I(\alpha, \alpha) \Rightarrow I(\alpha, \alpha) = 0 \blacktriangleleft$$

2)
$$I(\alpha, \beta) = -I(\beta, \alpha) \triangleright I(\alpha, \alpha) = I(\alpha, \beta) + I(\beta, \alpha)$$

3) Пусть
$$F(x) = I(a, x), x \in [a, b]$$
. Тогда $I(\alpha, \beta) = F(\beta) - F(\alpha)$.
• $I(\alpha, \beta) = I(a, \beta) + I(\alpha, a) = I(a, \beta) - I(a, \alpha) = F(b) - F(a)$

Лемма 1. Пусть $I:[a,b]^2 \to \mathbb{R}$ — $a\partial \partial umu$ вная функция отрезка, причём $\exists f \in \mathcal{R}[a,b] \mid \forall \ \alpha,\beta \in [a,b], \alpha < \beta \ (\beta - \alpha) \inf_{[a,b]} f \leq I(\alpha,\beta) \leq (\beta - \alpha) \sup_{[a,b]} f \Rightarrow$

$$\Rightarrow I(a,b) = \int_{a}^{b} f(x) \, dx$$

▶ Имеем: \forall разбиения \mathcal{P} отрезка [a,b]

$$\sum_{k=1}^{n} m_k \Delta x_k \le I(a,b) = \sum_{k=1}^{n} I(x_{k-1}, x_k) \le \sum_{k=1}^{n} M_k \Delta x_k$$

Переходя к пределу при $d(\mathcal{P}) \to 0$, получим: $\int\limits_a^b f(x)\,dx \le I(a,b) \le \int\limits_a^b f(x)\,dx$ \blacktriangleleft

Пункт 2. Длина кривой

Рассмотрим кривую $L = \{(x, y) \in \mathbb{R}^2 \mid x = \varphi(t), y = \psi(t), t \in [t_0, T]\}$, где $\varphi, \psi \in \mathcal{C}[t_0, T]$, т.е. L задана параметрически.

Определение 1. Точка $c=(x_c,y_c)\in L$ называется кратной точкой кривой L, если $\exists \ t_1,t_2\in [t_0,T], t_1\neq t_2 \mid \begin{cases} \varphi(t_1)=\varphi(t_2)=x_c \\ \psi(t_1)=\psi(t_2)=y_c \end{cases}$

Определение 2. Кривая L называется <u>простой</u>, если y неё нет кратных точек, кроме, быть может, концов прямой $A(\varphi(t_0), \psi(t_0)), B(\varphi(T), \psi(T))$.

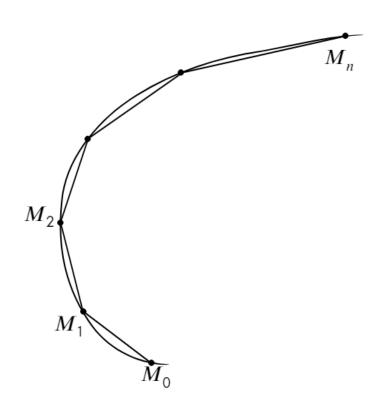
Определение 3. *Кривая* L *называется замкнутой, если* A = B.

Рассмотрим простую кривую
$$L: \begin{cases} x=x(t) \\ y=y(t) \end{cases}$$
 $t \in [t_0,T]$ Рассмотрим произвольное разбиение $\mathcal{P} = \{t_0,t_1,\ldots,t_n=T\}$ отрезка $[t_0,T]$. Разби-

Рассмотрим произвольное разбиение $\mathcal{P} = \{t_0, t_1, \dots, t_n = T\}$ отрезка $[t_0, T]$. Разбиение \mathcal{P} индуцирует разбиение кривой L точками $M_k = (x(t_k), y(t_k)), k = 0, \dots, n$. Соединим точки M_{k-1} и M_k прямолинейными отрезками. Получим ломанную l, которая называется вписанной ломанной в кривую L (с длиной |l|).

Определение 4.

- 1) Простая кривая L называется <u>спрямляемой</u>, если множество длин всевозможных вписанных в эту кривую ломанных ограничено (сверху, снизу -0).
- 2) Точная верхняя грань (sup) этого множества называется $\underline{\partial}_{\Lambda}$ иной кривой L. Обозначается: |L|.



Теорема 1. Пусть L- простая кривая, заданная параметрически: $x = \varphi(t), y = \psi(t), t \in [t_0, T], \ \textit{где } \varphi, \psi \in \mathcal{C}^1[t_0, T].$ Тогда L спрямляема, причём

$$|L| = \int_{t_0}^{T} \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2} dt \tag{1}$$

1) Докажем, что L спрямляема. Пусть l — произвольная ломанная, вписанная в L. Оценим |l|:

$$|l| = \sum_{k=1}^{n} |M_{k-1}M_k| = \sum_{k=1}^{n} \sqrt{(x_k - x_{k-1})^2 + (y_k - y_{k-1})^2} =$$

$$= \sum_{k=1}^{n} \sqrt{\left(\varphi(t_k) - \varphi(t_{k-1})\right)^2 + \left(\psi(t_k) - \psi(t_{k-1})\right)^2} = |\text{Т.Лагранжа}| =$$

$$= \sum_{k=1}^{n} \sqrt{\left(\varphi'(\tau_k)\right)^2 + \left(\psi'(\tau_k^*)\right)^2} \, \Delta t_k \le (T - t_0) \sup_{[t_0, T]} \sqrt{\left(\varphi'\right)^2 + \left(\psi'\right)^2} \in \mathbb{R}$$

Итак, $\forall l |l| \leq const \Rightarrow L$ спрямляема.

2) Теперь докажем (1). Рассмотрим аддитивную функцию отрезка, определённую формулой:

$$I(\alpha,\beta) = |M(\alpha)M(\beta)|$$
, где $M(\alpha) = (\varphi(\alpha),\psi(\alpha)), M(\beta) = (\varphi(\beta),\psi(\beta))$

Докажем, что это аддитивная функция отрезка, т.е.

$$\forall \alpha, \beta, \gamma \in [t_0, T] \ I(\alpha, \gamma) = I(\alpha, \beta) + I(\beta, \gamma)$$
 (2)

Во-первых, $\forall \ l \ |l| \le |l_1| + |l_2| \ для нек. \ l_1, l_2 \Rightarrow \sup |l| \le \sup |l_1| + \sup |l_2| \ , \ \text{т.e.}$ $I(\alpha, \gamma) \le I(\alpha, \beta) + I(\beta, \gamma)$

Во-вторых, рассмотрим произвольные l_1 и l_2 : $|l_1| + |l_2| = |l_1 \cup l_2| \le \sup |l| \Rightarrow \sup |l_1| + \sup |l_2| \le \sup |l|$, т.е. $I(\alpha, \beta) + I(\beta, \gamma) \le I(\alpha, \gamma)$. В итоге,

$$I(\alpha, \beta) + I(\beta, \gamma) \le I(\alpha, \gamma) \le I(\alpha, \beta) + I(\beta, \gamma) \Rightarrow (2)$$

Наконец, положим $f(t) := \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2}, t \in [t_0, T]$. Тогда выполнены все условия для леммы из пункта 1:

- $I(\alpha,\beta)$ аддитивная функция отрезка.
- $f \in \mathcal{C}[t_0, T]$
- Из п.1) следует, что $(\beta-\alpha)\inf_{[t_0,T]}f\leq I(\alpha,\beta)\leq (\beta-\alpha)\sup_{[t_0,T]}f\ \ \forall\ \alpha,\beta\in [a,b],\alpha<\beta$

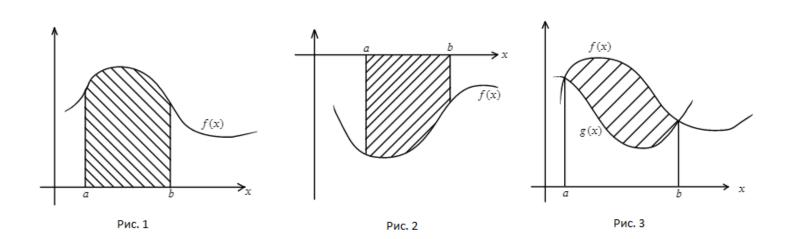
Воспользовавшись леммой, получаем: $|L| = I(t_0, T) = \int_{t_0}^T \sqrt{\left(\varphi'(t)\right)^2 + \left(\psi'(t)\right)^2} \, dt \blacktriangleleft$

Следствия:

- 1) Если кривая задана в явном виде: $\begin{cases} x = x \\ y = f(x) \end{cases} \quad x \in [a,b], f \in \mathcal{C}^1[a,b],$ то $|L| = \int\limits_a^b \sqrt{1 + \big(f'(x)\big)^2} \, dx$
- 2) В полярных координатах: $r=r(\varphi),$ то $\begin{cases} x=r\cos\varphi\\ y=r\sin\varphi \end{cases}, \varphi\in[\varphi_0,\Phi], r\in\mathcal{C}^1[\varphi_0,\Phi] \end{cases}$ Тогда $\begin{cases} x'(\varphi)=r'(\varphi)\cos\varphi-r(\varphi)\sin\varphi\\ y'(\varphi)=r'(\varphi)\sin\varphi+r(\varphi)\cos\varphi \end{cases} \Rightarrow \Rightarrow (x')^2+(y')^2=(r')^2+r^2\Rightarrow |L|=\int\limits_{\varphi_0}^\Phi\sqrt{(r')^2+r^2}\,d\varphi$

Пункт 3. Площадь криволинейной трапеции

Пусть
$$f \in \mathcal{C}[a,b], f \geq 0$$
 на $[a,b]$. Тогда $S_1 = \int\limits_a^b f(x) \, dx$ (см. Рис. 1). Если же $f \in \mathcal{C}[a,b], f \leq 0$ на $[a,b]$, то $S_2 = -\int\limits_a^b f(x) \, dx$ (см. Рис. 2). В свою очередь, имеет место формула: $S_3 = \int\limits_a^b \left(f(x) - g(x)\right) \, dx$ (см. Рис. 3).

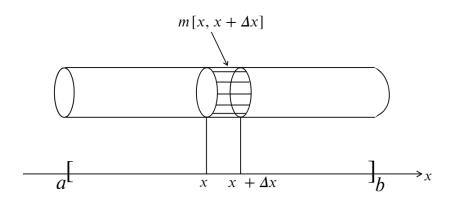


Пункт 4. Некоторые механические приложения интеграла

см. Камынин, стр. 249 Масса неоднородного стержня

Рассмотрим тонкий стержень, расположим его на отрезке $[a,b] \subset \mathbb{R}$. (Масса и др. характеристики не меняются в поперечном сечении). Плотность стержня $\rho = \rho(x), x \in [a,b]$. Предполагаем, что $\rho \in \mathcal{C}[a,b]$

$$\rho(x) := \lim_{\Delta x \to 0} \frac{m[x, x + \Delta x]}{\Delta x} \Rightarrow m[x, x + \Delta x] = \rho(x)\Delta x + o(1)\Delta x$$



Имеем:

$$M = m[a,b] = \sum_{k=1}^{n} m[x_{k-1}, x_k] = \sum_{k=1}^{n} \rho(x_{k-1}) \Delta x_k + o(1) \sum_{k=1}^{n} \Delta x_k \to \int_a^b \rho(x) \, dx$$
 при $d(\mathcal{P}) \to 0 \Rightarrow$

$$\Rightarrow M = \int_{a}^{b} \rho(x) \, dx$$

Центр тяжести неоднородного стержня

Если имеется конечный набор материальных точек, то координаты центра масс такой системы вычисляется по формуле:

$$x_c = \frac{\sum_{k=1}^{n} m(x_k) x_k}{\sum_{k=1}^{n} m(x_k)}$$

Полагаем, что $m(x) = \lim_{\Delta x \to 0} m[x, x + \Delta x].$

Далее, рассмотрим произвольное разбиение \mathcal{P} отрезка [a,b].

$$m_k := m[x_{k-1}, x_k] = \int_{x_{k-1}}^{x_k} \rho(x) dx = \rho(\xi_k) \Delta x_k$$
 по Т. о среднем $(\rho \in \mathcal{C}[x_{k-1}, x_k])$

Кроме того,
$$M = \int_a^b \rho(x) dx$$
. В итоге:

$$x_c \approx \frac{\sum_{k=1}^n \rho(\xi_k) \Delta x_k \cdot \xi_k}{M} = \frac{\sum_{k=1}^n \int_{x_k-1}^{x_k} x \rho(x) dx}{\int_a^b \rho(x) dx} = \frac{\int_a^b x \rho(x) dx}{\int_a^b \rho(x) dx}$$

Работа переменной силы

Пусть материальная точка перемещается по отрезку [a,b] под действием переменной силы $F(x), x \in [a,b]$. Имеем: работа силы на участке $[x_{k-1}, x_k] \approx F(x_k) \Delta x_k \Rightarrow$

$$\Rightarrow A_{[a,b]} pprox \sum_{k=1}^n F(x_k) \Delta x_k o \int\limits_a^b F(x) \, dx$$
 при $F \in \mathcal{C}[a,b]$

Конспект лекций по математическому анализу

Лектор Бадерко Е.А.

Часть 3 Дифференциальное исчисление функций многих переменных

Отделение механики, 1 курс, 2 семестр, 2019-2020 уч. г.

Об опечатках большая просьба сообщать составившему конспект Некрасову Всеволоду на почту vsevolod.nekrasov@math.msu.ru

Содержание

Гла	ава	1. Непрерывные функции многих переменных	3
	§1 .	Линейные, нормированные, метрические и евклидовы пространства .	3
	§2.	Топология метрического пространства	6
	§3 .	Последовательности в метрическом пространстве	10
	§4 .	Предел отображения	11
	§5 .	Непрерывные отображения в метрических пространствах	17
	§6.	Компактность	19
	§7.	Непрерывные функции на компакте	22
	§8.	Непрерывные функции на связном множестве в \mathbb{R}^n	24
Глава 2. Дифференциальное исчисление функций многих переменных			25
	§1 .	Производные и дифференциалы первого порядка	25
	§2 .	Дифференцирование сложной функции	28
	§3 .	Производная по направлению. Градиент	29
	§4 .	Производные и дифференциалы высших порядков	30
	§5 .	Локальный экстремум функций многих переменных	37
	§6.	Неявные функции	39

Глава 1. Непрерывные функции многих переменных

§1. Линейные, нормированные, метрические и евклидовы пространства

Определение 1. Mножество $\mathbb{E} \neq \varnothing$ называется линейным пространством, если

- 1) $\forall x,y \in \mathbb{E}$ однозначно определяется $z := x + y \in \mathbb{E}$, причём
 - (a) $x + y = y + x \ \forall x, y \in \mathbb{E}$ (коммутативность)
 - б) $x + (y + z) = (x + y) + z \ \forall x, y, z \in \mathbb{E}$ (ассоциативность)
 - в) $\exists 0 \in \mathbb{E} \mid x+0=x \ \forall x \in \mathbb{E}$ (существование нейтрального элемента)
 - e) $\forall x \in \mathbb{E} \exists ! (-x) \in \mathbb{E} \mid x + (-x) = 0$
- 2) $\forall x \in \mathbb{E}, \forall \alpha \in \mathbb{R}$ однозначно определён элемент $\alpha x \in \mathbb{E},$ причём
 - a) $\alpha(\beta x) = (\alpha \beta) x \ \forall x \in \mathbb{E}, \forall \alpha, \beta \in \mathbb{R}$
 - $6) \ 1 \cdot x = x \ \forall x \in \mathbb{E}$
 - *b*) $(\alpha + \beta)x = \alpha x + \beta x \ \forall x \in \mathbb{E}, \forall \alpha, \beta \in \mathbb{R}$
 - $\alpha(x+y) = \alpha x + \alpha y \ \forall x, y \in \mathbb{E}, \forall \alpha \in \mathbb{R}$

Определение 2. Элементы $x_1, x_2, \dots, x_m \in \mathbb{E}$ [линейно независимы] $\stackrel{\text{def}}{\Leftrightarrow} \sum_{k=0}^m \alpha_k x_k = 0 \Rightarrow \alpha_k = 0 \ \forall k = 1, \dots, m$

Пример: $\mathbb{E} = \mathbb{R}, \mathbb{R}^2, \dots, \mathbb{R}^n, \mathcal{C}(a,b), \mathcal{C}[a,b], \mathcal{D}(a,b), \mathcal{R}[a,b]$ — линейные пространства

Определение 3. Пусть \mathbb{E} — линейное пространство.

 Φ ункция $\|\cdot\|: x \in \mathbb{E} \to \|x\| \in \mathbb{R}$ называется нормой на пространстве \mathbb{E} , если:

- 1) $\|x\| \ge 0 \ \forall x \in \mathbb{E}$, причём $\|x\| = 0 \Leftrightarrow x = 0$ (положительность нормы)
- 2) $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{E}$ (неравенство треугольника)
- 3) $\|\alpha x\| = |\alpha| \cdot \|x\| \ \forall x \in \mathbb{E}, \forall \alpha \in \mathbb{R}$

Линейное пространство, снабжённое нормой, называется пормированным пространством

Замечание: Из требования 2) для нормы следует непрерывность нормы:

$$\left| \|x\| - \|y\| \right| \le \|x - y\| \ \forall x, y \in \mathbb{E}$$

▶
$$\|x\| = \|x - y + y\| \le \|x - y\| + \|y\| \Leftrightarrow \|x\| - \|y\| \le \|x - y\|$$
. Аналогично $\|y\| \le \|x - y\| + \|x\|$ ◀

Примеры:

- 1) $\mathbb{E} = \mathbb{R}, ||x|| := |x|$
- 2) $\mathbb{E} = \mathbb{R}^2$
 - a) $||(x_1, x_2)|| := \sqrt{x_1^2 + x_2^2}$
 - 6) $||(x_1, x_2)|| := |x_1| + |x_2|$
 - B) $||(x_1, x_2)|| := \max\{|x_1|, |x_2|\}$

Определение 4. Пусть \mathbb{E} — некоторое непустое множество. Функция $\rho:(x,y)\in\mathbb{E}\times\mathbb{E}\to \rho(x,y)\in\mathbb{R}$ называется расстоянием (метрикой) на \mathbb{E} ,если

- 1) $\rho(x,y) \ge 0 \ \forall x,y \in \mathbb{E}$, причём $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2) $\rho(x,y) = \rho(y,x) \ \forall x,y \in \mathbb{E}$
- 3) $\rho(x,z) \le \rho(x,y) + \rho(y,z) \ \forall x,y,z \in \mathbb{E}$

Mножество \mathbb{E} , снабжённое расстоянием, называется метрическим пространством

Замечание:

- 1) Пусть \mathbb{E} нормированное пространство. Тогда $\rho(x,y) := ||x-y||$, т.е. любое нормированное пространство можно превратить в метрическое.
- 2) На любом множестве $\mathbb E$ можно ввести метрику $\rho(x,y):= \begin{cases} 1, x \neq y \\ 0, x=y \end{cases}$
- 3) Не в любом метрическом пространстве можно ввести норму. Например, в \mathbb{R}^2 : $\rho((x_1,x_2),(y_1,y_2)) \coloneqq |x_1-y_1|^{1/2} + |x_2-y_2|^{1/2}$ метрика, но для нормы не выполнено свойство 3): $\|\alpha(x-y)\| \neq |\alpha| \|x-y\|$

Определение 5. Пусть \mathbb{E} — линейное пространство. Функция $(\cdot, \cdot): x, y \in \mathbb{E} \times \mathbb{E} \to (x, y) \in \mathbb{R}$ называется скалярным произведением на пространстве \mathbb{E} , если:

- 1) $(x,x) \ge 0 \ \forall x \in \mathbb{E}, \ npu ч \ddot{e} M \ (x,x) = 0 \Leftrightarrow x = 0$
- 2) $(x,y) = (y,x) \ \forall x,y \in \mathbb{E}$
- 3) $(\alpha x' + \beta x'', y) = \alpha(x', y) + \beta(x'', y) \ \forall x', x'', y \in \mathbb{E}, \forall \alpha, \beta \in \mathbb{R}$

 $\overline{\it Линейное пространство, снабжённое скалярным произведением, называется [евклидовым пространством].}$

Замечание: Любое евклидово пространство можно превратить в нормированное, введя на нём норму $\|x\| := \sqrt{(x,x)}$ (неравенство треугольника будет вытекать из след. теорем)

Теорема 1 (Неравенство Коши-Буняковского).

 Π усть \mathbb{E} — евклидово пространство. Тогда справедливо неравенство

$$\left| (x,y) \right| \le \sqrt{(x,x)} \cdot \sqrt{(y,y)} \tag{1}$$

 \blacktriangleright (1) \Leftrightarrow $(x,y)^2 \le (x,x) \cdot (y,y)$ (2)

Если x=0, то (2) верно. Иначе рассмотрим $(tx+y,tx+y),t\in\mathbb{R}$. Имеем:

$$(tx+y,tx+y)=t^2(x,x)+2t(x,y)+(y,y)\geq 0\;\forall t\in\mathbb{R}\;\text{по акс. }1)\Rightarrow\\ \Rightarrow\frac{D}{4}=(x,y)-(x,x)(y,y)\leq 0$$

Полученное неравенство равносильно (2) ◀

Теорема 2 (Неравенство Минковского).

Eсли $\mathbb{E} - e$ вклидово пространство и $||x|| := \sqrt{(x,x)}$, то

$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{E}$$
 (3)

▶

$$(1) \Leftrightarrow (x+y,x+y) \le \left(\sqrt{(x,x)} + \sqrt{(y,y)}\right)^2 \Leftrightarrow \Leftrightarrow (x,x) + 2(x,y) + (y,y) \le (x,x) + 2\sqrt{(x,x)}\sqrt{(y,y)} + (y,y) \Leftrightarrow \Leftrightarrow |(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}$$

Но это — неравенство Коши-Буняковского. ◀

Следовательно, $||x|| := \sqrt{(x,x)}$ является нормой.

Пример:

1)
$$\mathbb{E} = \mathbb{R}^n$$

a)
$$(x,y) = \sum_{k=1}^{n} x_k y_k$$

6)
$$||x|| := \sqrt{(x,x)} = \sqrt{x_1^2 + \ldots + x_n^2}$$

B)
$$\rho(x,y) := ||x-y||$$

2)
$$\mathbb{E} = \mathcal{C}[a, b]$$

a)
$$(f,g) = \int_a^b f(x)g(x) dx$$

6)
$$||f|| := \sqrt{(f, f)} = \sqrt{\int_a^b f^2(x) dx}$$

в) Верны неравенства Коши-Буняковского и Минковского для интегралов

§2. Топология метрического пространства

Пункт 1. Окрестности в метрическом пространстве

Пусть \mathbb{X} — метрическое пространство с метрикой ρ . Говорим, что дано метрическое пространство (\mathbb{X}, ρ) .

Пусть $X_1 \subset X, X_1 \neq \emptyset$. Тогда метрическое пространство (X_1, ρ) — подпространство (X, ρ) (или просто X_1 — подпространство X). X — метрическое пространство всюду далее.

Определение 1. Пусть $a \in \mathbb{X}, r > 0$.

- 1) Множество $B(a,r) := \{x \in \mathbb{X} \mid \rho(a,x) < r\}$ называется $\boxed{\text{открытым шаром}}$
- 2) Множество $B[a,r]:=\{x\in\mathbb{X}\mid \rho(a,x)\leq r\}$ называется замкнутым шаром
- 3) Множество $S(a,r):=\{x\in\mathbb{X}\mid \rho(a,x)=r\}$ называется сферой

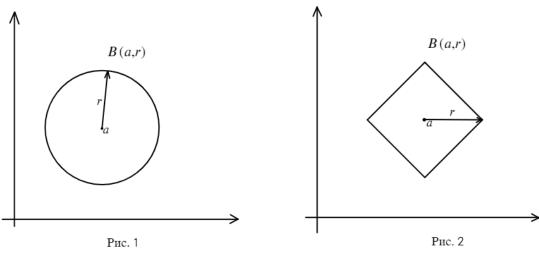
Определение 2. Пусть $a \in X$.

- 1) $\boxed{Oкрестностью}\ O(a)\ mочки\ a\ называется любой открытый шар\ B(b,r),\ co-держащий\ a.}$
- 2) Центрированной окрестностью $O_{\delta}(a)$ точки а называется $B(a,\delta)$.
- 3) $\boxed{\Pi poколотой окрестностью} \mathring{O}(a)$ точки а называется множество $O(a) \backslash \{a\}$.

Пример:

1)
$$\mathbb{X} = \mathbb{R}^2$$
, $\rho(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. (Puc. 1)

2)
$$\mathbb{X} = \mathbb{R}^2$$
, $\rho(x,y) = |x_1 - x_2| + |y_1 - y_2|$. (Рис. 2)



3)
$$\mathbb{X} = \mathbb{N}, \rho(x, y) = |x - y|, O_{1/2}(n) = \{n\}, O_2(n) = \{n - 1, n, n + 1\}$$

Теорема 1 (Свойства окрестностей в метрическом пространстве).

- 1) $O(a) \neq \emptyset$
- 2) $\forall O(a) \exists \delta > 0 \mid O_{\delta}(a) \subset O(a)$
- 3) a) $\forall O_1(a), O_2(a) \exists O(a) \mid O(a) \subset O_1(a) \bigcap_n O_2(a)$

6)
$$\forall O_k(a), k = 1, \dots, n \exists O(a) \mid O(a) \subset \bigcap_{k=1}^n O_k(a)$$

- 4) (Принцип отделимости Хаусдорфа) $\forall a, b \in \mathbb{X}, a \neq b \; \exists \; O(a), O(b) \; | \; O(a) \cap O(b) = \varnothing$
- 5) $a) \ \forall b \in O(a), O(a) oкрестность точки b$ 6) $\forall b \in \mathring{O}(a) \ \exists O_{\delta}(b) \subset O(a) \mid a \notin O_{\delta}(b)$

ightharpoons

- 1) $O(a) \neq \emptyset$, t.k. $a \in O(a)$.
- 2) Пусть O(a) окр. т. a. Тогда $\exists \, b \in O(a), r > 0 \mid O(a) = B(b,r), a \in B(b,r)$. Положим $\delta := r \rho(a,b), O_{\delta}(a)$ искомая окрестность. В самом деле, пусть $x \in O_{\delta}(a) \Rightarrow \rho(x,b) \leq \underbrace{\rho(x,a)}_{<\delta} + \rho(a,b) < r \Rightarrow x \in B(b,r)$
- 3) Для каждой из $O_1(a), O_2(a)$ по пред. пункту $\exists O_{\delta_1} \subset O_1(a), O_{\delta_2} \subset O_2(a)$. Положив $\delta = \min\{\delta_1, \delta_2\}$ и $O(a) = O_{\delta}(a)$, имеем требуемое.
- 4) Пусть $a,b\in\mathbb{X}, a\neq b$. Положим $\delta:=\frac{\rho(a,b)}{3}$, тогда $O_{\delta}(a)\bigcap O_{\delta}(b)=\varnothing$. Действительно, предположим противное: $\exists\,c\in O_{\delta}(a)\bigcap O_{\delta}(b)$. Но из этого следует, что $\rho(a,b)\leq \rho(a,c)+\rho(c,b)<\frac{2\rho(a,b)}{3}$ противоречие.
- 5) а) В самом деле, для O(a) $\exists c \in O(a), r > 0 \mid O(a) = B(c,r) = O(b)$
 - б) Из п. а) + п. 2) следует, что $\exists \delta_1 > 0 \mid O_{\delta_1}(b) \subset O(a)$. Положим $\delta = \min\{\delta_1, \rho(a,b)\}$, тогда $O_{\delta}(b) \subset O_{\delta_1}(b) \subset O(a)$ и, т.к. $\delta < \rho(a,b)$, то $a \notin O_{\delta}(b)$

Все определения и теоремы, использующие понятия окрестности, переносятся со случая $\mathbb{X} = \mathbb{R}$ на произвольное метрическое пространство. \blacktriangleleft

Пункт 2. Открытые и замкнутые множества в метрическом пространстве $\mathbb X$

Всюду далее $A \subset X$.

Определение 1.

1)
$$a - \lceil \text{внутренняя точка} \rceil A \overset{\text{def}}{\Leftrightarrow} \exists O(a) \mid O(a) \subset A$$

2)
$$A_i = \{x \in \mathbb{X} \mid x -$$
 внутренняя точка $A\}$ (внутренность A)

3)
$$A-\lceil omкpытое$$
 множество $\stackrel{\mathrm{def}}{\Leftrightarrow} A=A_i$

Замечание:

1)
$$a \in A_i \Rightarrow a \in A$$

2)
$$x \in \mathbb{X} \Rightarrow x \in \mathbb{X}_i$$
, T.K. $\mathbb{X}_i = \mathbb{X}$

Определение 2.

1)
$$a -$$
[внешняяя точка] $A \stackrel{\mathrm{def}}{\Leftrightarrow} \exists O(a) \mid O(a) \cap A = \varnothing, \ m.e. \ O(a) \subset \mathbb{X} \setminus A = CA$

2)
$$A_e = \{x \in \mathbb{X} \mid x -$$
внешняя точка $A\}$ (внешность A)

Замечание: $a \in A_e \Rightarrow a \notin A$

Пример: 1)
$$\mathbb{X} = \mathbb{N}, \rho(x, y) = |x - y| . \forall A \subset \mathbb{N} A_i = A, A_e = \mathbb{N} \setminus A$$

2)
$$\mathbb{X} = \mathbb{R}$$
 — про интервалы см. 1 семестр, Часть 1

Определение 3.

1) а
$$-\lceil \overline{\text{граничная точка}} \rceil A \stackrel{\text{def}}{\Leftrightarrow} \forall O(a), \ O(a) \cap A \neq \varnothing, O(a) \cap CA \neq \varnothing$$

2) Граница
$$A \partial A = \{x \in \mathbb{X} \mid x - \text{граничная точка } A\}$$

Пример: 1)
$$A=B(a,r), \partial A=S(a,r); \ 2)\mathbb{X}=\mathbb{R}, A=\mathbb{N}, \partial A=A$$

Определение 4.

1) а — точка прикосновения
$$A \stackrel{\text{def}}{\Leftrightarrow} \forall O(a), O(a) \cap A \neq \emptyset$$

2)
$$\overline{A} = \{x \in \mathbb{X} \mid x - moчкa \ npuкochoвения \ A\} - замыкание \ A$$

3)
$$A-$$
 [замкнутое множество] $\stackrel{\text{def}}{\Leftrightarrow} A=\overline{A}$

Замечание: $A \subset \overline{A}$, $\partial A \subset \overline{A}$

Определение 5. 1)
$$a-\lceil npedeльная\ moчкa \rceil A \stackrel{\mathrm{def}}{\Leftrightarrow} \forall\ \mathring{O}(a),\ \mathring{O}(a) \bigcap A \neq \varnothing$$

2)
$$A' = \{x \in \mathbb{X} \mid x - npe$$
дельная точка $A\} - npoизводное$ множество

Для доказательства следующих теорем воспользуйтесь свойствами окрестностей, обратитесь к соответствующим доказательствам в 1 семестре (вместо $|-\rho\rangle$).

Теорема 1. $\forall O(a) - \textit{открытое множество}.$

▶ ... ◀

Теорема 2. $A - 3 a m \kappa H y m o \Leftrightarrow A \supset A'$.

▶ ... ◀

Теорема 3. $A - замкнуто \Leftrightarrow CA - открыто.$

▶ ... ◀

Пример:

- 1) \mathbb{X} , \emptyset замкнуты и открыты
- 2) CB[a,r] открыто.
- 3) B[a, r] замкнуто, т.к. CB[a, r] открыто.

Теорема 4. Пусть $A_k \subset \mathbb{X}, k = 1, \dots, m$

- 1) $A_k om\kappa p \omega m o, \ k = 1, \dots, m \Rightarrow \bigcap_{k=1}^n A_k om\kappa p \omega m o.$
- 2) A_k замкнуто, $k=1,\ldots,m\Rightarrow \bigcup_{k=1}^n A_k$ замкнуто.

▶ ... ◀

Теорема 5. Пусть $A \subset \mathbb{X}$. Тогда $\overline{A}, \partial A, A' -$ замкнутые множества.

▶ ... ◀

Теорема 6. Пусть $A' \neq \emptyset$. Тогда $\forall a \in A', \forall O(a) : \mathring{O}(a) \cap A$ — бесконечное множество.

▶ ... ◀

Замечание: A — конечно $\Rightarrow A' = \emptyset$.

§3. Последовательности в метрическом пространстве

Пункт 1. Предел последовательности

Рассмотрим метрическое пространство (\mathbb{X}, ρ) и последовательность $(a_n \in \mathbb{X}, n \in \mathbb{N})$ элементов из \mathbb{X} .

Определение 1. Последовательность $(a_n \in \mathbb{X}, n \in \mathbb{N})$ $\boxed{cxodumcs}$ κ $a \in \mathbb{X} \stackrel{\text{def}}{\Leftrightarrow} \rho(a_n, a) \to 0$ npu $n \to \infty$, m.e.:

$$\lim_{n \to \infty} a_n = a \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ | \ \rho(a_n, a) < \varepsilon \ \forall n > N \stackrel{\text{def}}{\Leftrightarrow} \ \forall \ O(a) \ \exists \ N \in \mathbb{N} \ | \ a_n \in O(a) \ \forall n > N$$

Определение 2. Пусть
$$A\subset \mathbb{X}$$
. Тогда $A-\lceil$ ограничено $\rceil \overset{\mathrm{def}}{\Leftrightarrow} \exists\, B[a,r]\mid A\subset B[a,r]$

Все теоремы о пределе последовательности переносятся со случая $\mathbb{X} = \mathbb{R}$ на произвольное метрическое пространство.

<u>Пункт 2</u>. Фундаментальные последовательности в метрическом пространстве

Определение 1. Последовательность $(a_n \in \mathbb{X}, n \in \mathbb{N})$ — фундаментальная (последовательность Kowu) $\stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \rho(a_n, a_m) < \varepsilon \ \forall n, m > N$

Теорема 1. Последовательность $(a_n \in \mathbb{X}, n \in \mathbb{N})$ сходится $\Rightarrow (a_n)$ —фундаментальная.

Замечание: Обратное, вообще говоря, неверно. Например, в пространстве $\mathbb{X} = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$ с метрикой $\rho(x,y) = |x-y|$ последовательность $\left(a_n = \frac{1}{n}, n \in \mathbb{N} \right)$ является фундаментальной, однако (a_n) не сходится в \mathbb{X} .

Определение 2.

 Π усть (\mathbb{X}, ρ) — метрическое пространство. Тогда (\mathbb{X}, ρ) — полное (банахово) $\stackrel{\text{def}}{\Leftrightarrow}$ имеет место импликация: $(a_n \in \mathbb{X}, n \in \mathbb{N})$ — фундаментальная $\Rightarrow (a_n)$ сходится

Пример:

1)
$$\mathbb{X} = \mathbb{R}, \rho(x, y) = |x - y|$$

2)
$$\mathcal{C}[a,b], \|f\| = \max_{[a,b]} |f|, \rho(f,g) = \|f-g\| = \max_{[a,b]} |f-g|$$
 — полное (Зсеместр)

3)
$$\mathcal{C}[a,b], \|f\| = \sqrt{\int\limits_a^b f^2(x) \, dx}, \ \rho(f,g) = \sqrt{\int\limits_a^b (f(x)-g(x))^2(x) \, dx}$$
 — неполное (Зсем)

Рассмотрим евклидово пространство \mathbb{R}^n с метрикой $\rho(x,y) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$

Теорема 2. Пусть $(a_m \in \mathbb{R}^n, m \in \mathbb{N}) - nocnedosamenьность в <math>\mathbb{R}^n, a_m = (a_m^{(1)}, \dots, a_m^{(n)}).$ Тогда $\exists \lim_{m \to \infty} a_m = a = (a^{(1)}, \dots, a^{(n)}) \Leftrightarrow \exists \lim_{m \to \infty} a_m^{(k)} = a^{(k)}, k = 1, \dots, n$

▶ 1)
$$\implies$$
: пусть $\lim_{m\to\infty} a_m = a \Rightarrow$

$$\Rightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \rho(a_m, a) = \sqrt{(a_m^{(1)} - a^{(1)})^2 + \ldots + (a_m^{(n)} - a^{(n)})^2} < \varepsilon \ \forall m > N \Rightarrow$$

$$\Rightarrow \forall k = 1, \ldots, n \left| a_m^{(k)} - a^{(k)} \right| = \sqrt{(a_m^{(k)} - a^{(k)})^2} \le \rho(a_m, a) < \varepsilon \ \forall m > N \Rightarrow$$

$$\Rightarrow a_m^{(k)} \to a^{(k)}, k = 1, \ldots, n$$

2) (
$$\Leftarrow$$
): пусть $\lim_{m\to\infty} a_m^{(k)} = a^{(k)}, k = 1, \dots, n \Rightarrow$ $\Rightarrow \forall \, k = 1, \dots, n : \forall \, \varepsilon > 0 \, \exists \, N_k \in \mathbb{N} \mid \left| a_m^{(k)} - a^{(k)} \right| < \frac{\varepsilon}{\sqrt{n}} \, \forall m > N_k \Rightarrow$ \Rightarrow положив $N := \max_k N_k$ имеем: $\rho(a_m, a) < \sqrt{n \cdot \frac{\varepsilon^2}{n}} = \varepsilon \, \forall m > N$

Следствие: \mathbb{R}^n — полное пространство $\forall n$.

§4 . Предел отображения

Пункт 1. Общие определения

Пусть $(X_1, \rho_1), (X_2, \rho_2)$ — метрические пространства, $A \subset X_1$

Определение 1. Пусть дано отображение $f:A \to \mathbb{X}_2, a \in A'$. Тогда

$$\lim_{x \to a} f(x) = b \stackrel{\text{def}}{\Leftrightarrow} \forall \underbrace{O(b)}_{\text{Memp. } \rho_1} \exists \underbrace{O(a)}_{\text{Memp. } \rho_2} \mid f(x) \in O(b) \ \forall x \in \mathring{O}(a) \cap A$$

Можно так же как и ранее записать определения в терминах ε - δ , используя соответствующие метрики ρ_1, ρ_2 . Кроме того, все теоремы о пределе функции переносятся на общий случай. Например, единственность предела:

Теорема 1.
$$\lim_{x\to a} f(x) = b$$
, $\lim_{x\to a} f(x) = c \Rightarrow b = c$

▶ . . . ◀

Теорема 2 (определение предела по Гейне).

Пусть дано отображение $f: A \to \mathbb{X}_2, a \in A'$. Тогда

$$\exists \lim_{x \to a} f(x) = b \Leftrightarrow \forall (x_n \in \mathbb{X}, n \in \mathbb{N}) \mid x_n \neq a \ \forall n \in \mathbb{N} \land \lim_{n \to \infty} x_n = a \ \textit{umeem: } \lim_{n \to \infty} f(x_n) = b$$

▶ ... ◀

Рассмотрим частный случай: $\mathbb{X}_2 = \mathbb{R}^n$ с евклидовой метрикой ρ . Отображение $f:A\to\mathbb{R}^n$, т.е. $x\in\mathbb{X}_1\to f(x)=\big(f_1(x),\ldots,f_n(x)\big)$ — "вектор-функция"

Пункт 2. Функции двух переменных. Двойные и повторные пределы.

$$\mathbb{X}_1 = \mathbb{R}^2, \mathbb{X}_2 = \mathbb{R}, f: A \to \mathbb{R},$$
 где $A \subset \mathbb{R}^2$. $(x,y) \in A$

f(x,y) — функция двух переменных.

Пусть
$$(x_0, y_0) \in A'$$
. $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ — двойной предел (1)

Фиксируем $y \neq y_0$ и рассмотрим предел: $\exists \lim_{x \to x_0} f(x,y) = \varphi(y) \ \forall \ y \neq y_0$

Если
$$\exists \lim_{y \to y_0} \varphi(y) = \lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right) =: \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$
, то это повторный предел (2)

Если, наоборот, рассмотреть $f(x,\cdot):y\to f(x,y)\ \forall x\neq x_0$ и $\exists\lim_{y\to y_0}f(x,y)=\psi(x)$, то можно рассмотреть повторный предел в другом порядке:

$$\lim_{x \to x_0} \psi(x) = \lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right) =: \lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$$
(3)

$x \rightarrow x_0$ Пример:

- 1) \exists (1), no $\not\equiv$ (2), $\not\equiv$ (3)
- 2) \exists (2), \exists (3), (2)=(3), no \nexists (1)
- 3) \exists (2), \exists (3), (2) \neq (3) и \nexists (1)

см. примеры на страницах далее

$$f(x,y) = \begin{cases} x \cdot \sin \frac{1}{y} + y \cdot \sin \frac{1}{x}, \text{ если } xy \neq 0 \\ 0, \text{ если } xy = 0 \end{cases} (x_0,y_0) = (0,0)$$

$$|f(x,y)| \leq |x| + |y| \to 0 \text{ при } (x,y) \to (0,0) \Rightarrow \exists \lim_{(x,y) \to (0,0)} f(x,y),$$
 однако при фиксированном $x \neq 0 \not\exists \lim_{y \to y_0} f(x,y) \Rightarrow \not\equiv (3),$ аналогично $\not\equiv (2)$

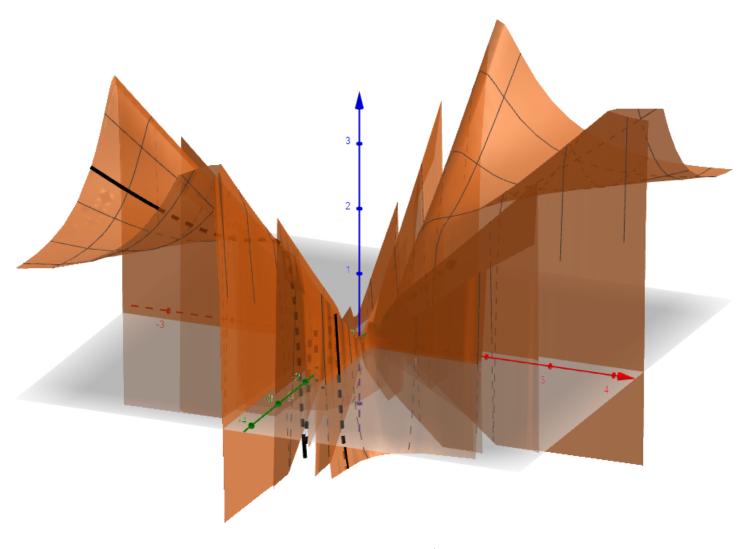


Рис. 1. Пример 1)

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, \text{ если } (x,y) \neq (0,0) \\ 0, \text{ если } x = y = 0 \end{cases} \quad (x_0,y_0) = (0,0)$$

$$\forall \, x \neq 0 \, \lim_{y \to 0} f(x,y) = \lim_{y \to 0} \frac{xy}{x^2 + y^2} = 0, \lim_{x \to 0} \lim_{y \to 0} f(x,y) = \lim_{x \to 0} \lim_{y \to 0} 0 = 0.$$
 Аналогично
$$\lim_{y \to 0} \lim_{x \to 0} 0 = 0$$
 Ho
$$f(x,0) = 0, f(x,x) = \frac{x^2}{2x^2} = \frac{1}{2} \Rightarrow \nexists \lim_{(x,y) \to (0,0)} f(x,y)$$

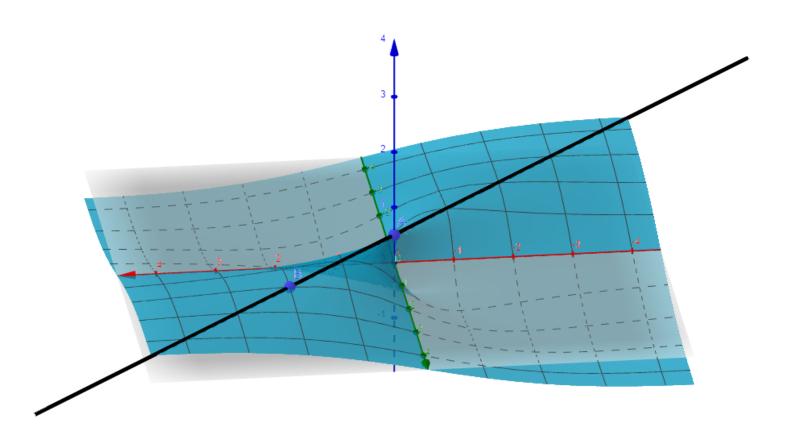


Рис. 2. Пример 2)

3)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, \text{ если } (x,y) \neq (0,0) \\ 0, \text{ если } x = y = 0 \end{cases} \qquad (x_0,y_0) = (0,0)$$

$$\forall \, x \neq 0 \, \lim_{y \to 0} f(x,y) = \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = 1 \Rightarrow \exists \, (3) = 1$$

$$\forall \, y \neq 0 \, \lim_{x \to 0} f(x,y) = \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = -1 \Rightarrow \exists \, (2) = -1$$
 Ho $\not\equiv (1) \, f(x,0) = 1, f(0,y) = -1$

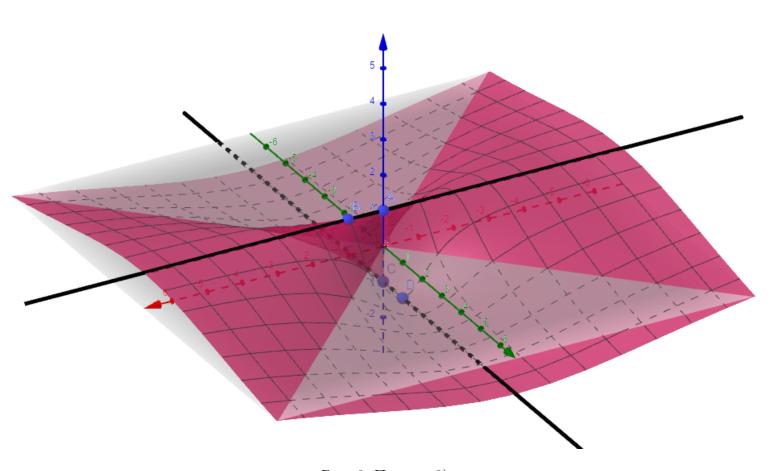


Рис. 3. Пример 3)

Теорема 1. Пусть $p_0 = (x_0, y_0) \in A', f : A \setminus p_0 \to \mathbb{R}, A \in \mathbb{R}^2$. Тогда

$$\left(\exists \lim_{(x,y)\to(x_0,y_0)} f(x,y) = b\right) \wedge \left(\exists \lim_{x\to x_0} f(x,y) = \varphi(y) \ \forall \ y\neq y_0\right) \Rightarrow \exists \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = b$$

Аналогично в другом порядке.

▶ Фиксируем $\varepsilon > 0$ произвольно. По определению двойного предела,

$$\begin{split} \exists \delta > 0 \mid \left| f(x,y) - b \right| < \frac{\varepsilon}{2} \; \forall \, (x,y) \in \mathring{O}_{\delta} \cap A \Rightarrow \\ \Rightarrow \left| f(x,y) - b \right| < \frac{\varepsilon}{2} \; \forall \, x : 0 < |x - x_0| < \frac{\delta}{\sqrt{2}}, \forall \, y : 0 < |y - y_0| < \frac{\delta}{\sqrt{2}} \\ \text{ (вписанный в окр. квадрат)} \end{split}$$
 Перейдём к $\lim_{x \to x_0} \left| f(x,y) - b \right| = \left| \varphi(y) - b \right| \leq \frac{\varepsilon}{2} < \varepsilon \; \forall \, y : 0 < |y - y_0| < \frac{\delta}{\sqrt{2}} \Rightarrow \\ \Rightarrow \forall \, \varepsilon > 0 \; \exists \delta > 0 \; | \left| \varphi(y) - b \right| < \varepsilon \forall \, y : 0 < |y - y_0| < \frac{\delta}{\sqrt{2}} \end{split}$

По определению это означает, что $\exists \lim_{y \to y_0} \varphi(y) = b \blacktriangleleft$

§5. Непрерывные отображения в метрических пространствах

Пункт 1. Непрерывность в точке

 $(\mathbb{X}_1, \rho_1), (\mathbb{X}_2, \rho_2)$ — метрические пространства, $A \subset \mathbb{X}_1, f: A \to \mathbb{X}_2$ Точка $a \in A$ называется изолированной точкой, если $\exists \, O(a) \mid O(a) \cap A = \{a\}$

Определение 1. Отображение f называется непрерывным в точке $a \in A$ $(f \in \mathcal{C}(a)), \ ecnu$

$$\forall O(f(a)) \exists O(a) \mid f(x) \in O(f(a)) \forall x \in O(a) \cap A$$

Eсли a — изолированная точка, то $f \in \mathcal{C}(a)$

Теорема 1 (Предельный критерий непрерывности отображения в точке).

Пусть
$$f: A \to \mathbb{X}_2, a \in A \cap A'$$
. Тогда $f \in \mathcal{C}(a) \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

Справедливы теоремы о локальной ограниченности, о сохранении знака, об арифметических операциях для непрерывных отображений.

Теорема 2 (Непрерывность композиции).

Пусть
$$(X_1, \rho_1), (X_2, \rho_2), (X_3, \rho_3)$$
 — метрические пространства, $A \subset X_1, B \subset X_2, f: A \to B, g: B \to X_3, a \in A, b = f(a) \in B$. Если $f \in \mathcal{C}(a), g \in \mathcal{C}(b), mo \ g \circ f \in \mathcal{C}(a)$

▶
$$g \in \mathcal{C}(b) \Rightarrow \forall O(g(b)) \exists O(b) \mid g(y) \in O(g(b)) \forall y \in O(b) \cap B$$

 $f \in \mathcal{C}(a) \Rightarrow \forall O(b) \exists O(a) \mid f(x) \in O(b) \forall x \in O(a) \cap A$
В итоге: $\forall O(g(b)) \exists O(a) \mid g(f(x)) \in O(g(b)) \forall x \in O(a) \cap A$ ◀

Теорема 3. Пусть
$$f: A \to \mathbb{X}_2, a \in A \cap A'$$
. Тогда $f \in \mathcal{C}(a) \Leftrightarrow \forall (a_n), a_n \in A \mid \lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} f(a_n) = f(a)$

▶ Следует из утверждения теоремы об эквивалентности понятий предела по Коши и по Гейне, т.к. в случае $a_n = a \ f(a_n) = f(a) \in O(f(a))$ ◀

Пункт 2. Непрерывные отображения на множестве

Определение 1.
$$f \in \mathcal{C}(A) \stackrel{\text{def}}{\Leftrightarrow} f \in \mathcal{C}(a) \ \forall a \in A$$

$$(\mathbb{X}_1,\rho_1),(\mathbb{X}_2,\rho_2)$$
 — метрические пространства, $f:\mathbb{X}_1\to\mathbb{X}_2$

Определение 2. Пусть $B \subset \mathbb{X}_2$. Полным прообразом множества B при отображении f называется множество $f^{-1}(B) := \{x \in \mathbb{X}_1 \mid f(x) \in B\}$

Замечание: $f^{-1}(CB) = Cf^{-1}(B)$ Действительно, $f^{-1}(CB) := \{x \in \mathbb{X}_1 \mid f(x) \in CB\} = \{x \in \mathbb{X}_1 \mid f(x) \notin B\} = \{x \in \mathbb{X}_1 \mid x \notin f^{-1}(B)\} = Cf^{-1}(B)$

Теорема 1 (Критерий непрерывности отображения на всём пространстве).

 $f \in \mathcal{C}(\mathbb{X}_1) \Leftrightarrow \Big(\forall B \subset \mathbb{X}_2, B-omkpumoe \Rightarrow f^{-1}(B)-makke \ omkpumoe \Big)$

▶ 1) ⇒: докажем, что если $f \in \mathcal{C}(\mathbb{X}_1)$ и $B \subset \mathbb{X}_2$ —открытое, то $f^{-1}(B)$ — открытое. Пусть $x_0 \in f^{-1}(B), y_0 = f(x_0) \in B$. Так как B — открытое, то $\exists O(y_0) \mid O(y_0) \subset B$. Используем, что $f \in \mathcal{C}(x_0)$: для $O(y_0) \exists O(x_0) \mid f(x) \in O(y_0) \ \forall x \in O(x_0)$, т.е. $\exists O(x_0) \mid \subset f^{-1}(B)$. В силу произвольности x_0 , это означает, что $f^{-1}(B)$ — открытое. 2) \rightleftharpoons : пусть $f^{-1}(B)$ открыто $\forall B \subset \mathbb{X}_2$, где B — открыто. Докажем, что $f \in \mathcal{C}(x_0) \ \forall x_0 \in \mathbb{X}_1$.

Пусть $x_0 \in \mathbb{X}_1, y_0 = f(x_0)$. Рассмотрим в качестве B произвольную $O(y_0)$. В силу предположения, $f^{-1}(B) = f^{-1}(O(y_0))$ — открытое, а значит для $x_0 \in f^{-1}(O(y_0)) \exists O(x_0) \mid O(x_0) \subset f^{-1}(O(y_0))$. Итак, $\forall O(y_0) \exists O(x_0) \mid f(x) \in O(y_0) \ \forall x \in O(x_0)$ Это и означает, что $f \in \mathcal{C}(x_0)$.

Следствие: $f \in \mathcal{C}(\mathbb{X}_1) \Leftrightarrow \Big(\forall B \subset \mathbb{X}_2, B$ —замкнутое $\Rightarrow f^{-1}(B)$ —также замкнуто $\Big) \blacktriangleright$ Для доказательства необходимо воспользоваться замечанием выше и теоремой: A — замкнуто $\Leftrightarrow CA$ — открыто. \blacktriangleleft

Замечание: Пусть $f \in \mathcal{C}(\mathbb{X}_1)$

- 1) Если $A \subset \mathbb{X}_1$ открыто, то f(A), вообще говоря, не обязательно открыто. Например, $f(x) = \sin x, A = (0, 2\pi), f(A) = [-1, 1]$
- 2) Если $A \subset \mathbb{X}_1$ замкнуто, то f(A), вообще говоря, не обязательно замкнуто. Например, $f(x) = e^x, A = \mathbb{R}, f(A) = (0, +\infty)$

Пункт 3. Непрерывность вектор-функции

Пусть (X_1, ρ_1) — метрические пространство, $A \subset X_1, f : A \to \mathbb{R}^n, f(x) = (f_1(x), \dots, f_n(x))$ Свойства вектор-функции f можно изучать по свойствам её компонент.

Теорема 1. Пусть $f: A \to \mathbb{R}^n$. Тогда $f \in \mathcal{C}(A) \Leftrightarrow f_i \in \mathcal{C}(A) \ \forall i = 1, \dots, n$

- ▶ Пусть $a \in A$.
 - 1) Если a изолированная точка, то $f \in C(a)$ и $f_i \in \mathcal{C}(a)$ $\forall i = 1, \ldots, n$
 - 2) Если $a \in A \cap A'$, то $f \in C(a) \Leftrightarrow \lim_{x \to a} f(x) = f(a) \Leftrightarrow \lim_{x \to a} f_i(x) = f_i(a) \Leftrightarrow f_i \in C(a) \ \forall i = 1, \dots, n$
- В 2) мы воспользовались доказанной теоремой для последовательностей (Т2 п.2 пар.3) и Т3 из п.1 данного параграфа. \blacktriangleleft

§6. Компактность

Пункт 1. Определение и основные свойства компакта

 (\mathbb{X}, ρ) — метрическое пространство, $K \subset \mathbb{X}$. Открытым покрытием K называется множество

$$\Big\{U_{\alpha}\subset\mathbb{X}\mid \big(U_{\alpha}-\text{открыто}\big)\wedge\big(\bigcup_{\alpha}U_{\alpha}\supset K\big)\Big\}$$

Определение 1. Пусть $K \subset \mathbb{X}$. Множество K называется компактом, если из любого его открытого покрытия можно выделить конечное подпокрытие.

Пример:

- 1) $\mathbb{X} = \mathbb{R}, K = [a, b]$ компакт
- 2) \mathbb{X} метр. пр-во, $K = \{x_1, x_2, \dots, x_n\}$ компакт

Лемма 1. Пусть $A \subset \mathbb{X}$. Тогда $a \in A' \Leftrightarrow \exists (x_n \in \mathbb{A}, n \in \mathbb{N}) \mid \lim_{n \to \infty} = a, x_n \neq a$.

▶ 1) ⇒: пусть $a \in A'$. По определению, $\forall O_{1/n}(a) \mid \mathring{O}_{1/n}(a) \cap A \neq \varnothing \Rightarrow \exists x_n \in \mathring{O}_{1/n}(a)$. Получаем последовательность, предел которой равен a.

2) ⇒: пусть $\exists (x_n \in \mathbb{A}, n \in \mathbb{N})$ с условием $\forall \varepsilon > 0 \exists N \in \mathbb{N} \mid 0 < \rho(x_n, a) < \varepsilon \ \forall n > N$. Тогда $x_n \in \mathring{O}_{\varepsilon}(a) \cap A$. Если $\mathring{O}(a)$ — произвольная окрестность, то $\exists \mathring{O}_{\varepsilon}(a) \subset \mathring{O}(a) \Rightarrow x_n \in \mathring{O}(a) \ \forall n > N \Rightarrow a \in A'$ ◀

Теорема 1 (О существовании предельной точки).

Пусть $K \subset \mathbb{X}, K$ — компакт, $A \subset K$, A бесконечно. Тогда $\exists a \in A' \cap K$.

▶ От противного: допустим, $A' \cap K = \emptyset$. Это значит, что $\forall x \in K \Rightarrow x \notin A' \Rightarrow \exists \mathring{O}(x) \mid \mathring{O}(x) \cap A = \emptyset$. Получили $\{\mathring{O}(x) \mid x \in K\}$ — открытое покрытие компакта $K \Rightarrow \exists$ конечное подпокрытие $\{\mathring{O}(x_k) \mid k = 1, \dots, m\} \mid \bigcup_{k=1}^m \mathring{O}(x_k) \supset K \supset A$. Но $\mathring{O}(x) \cap A = \emptyset$, следовательно, A содержит не более m точек, то есть A конечно. Имеем противоречие \blacktriangleleft

Теорема 2 (ограниченность и замкнутость компакта).

Пусть $K \subset X, K$ — компакт. Тогда K ограничено и замкнуто.

▶

- 1) Докажем, что K ограничено. Рассмотрим систему $\{B(x_0,n), n \in \mathbb{N}\}$, где x_0 фикс. произв. Система $\{B(x_0,n), n \in \mathbb{N}\}(*)$ открытое покрытие всего \mathbb{X} (иначе существовал бы $x \in \mathbb{X} \mid x \notin B(x_0,n) \ \forall \ n \in \mathbb{N} \Rightarrow \rho(x,x_0) \geq n \ \forall \ n \in \mathbb{N} \Rightarrow \rho(x_0,x) = \infty \Rightarrow$ противоречие, т.к. $\rho(x,x_0)$ конечное число).
 - В частности, (*) открытое покрытие компакта K, а значит можно выделить конечное подпокрытие $\{B(x_0,n_k), k=1,\ldots,m\}$, где $n_1 < n_2 < \ldots < n_m \Rightarrow x \in B(x_0,n_m) \Rightarrow x$ ограничено.
- 2) Докажем, что K замкнуто. Достаточно доказать, что $CK = \mathbb{X} \setminus K$ открыто. Фикс. произвольно $y \in CK$ и докажем, что $\exists \, O(y) \subset CK$.

Рассмотрим произвольно $x\in K$ и обозначим $\delta(x):=\rho(x,y)>0$. Имеем: $B(x,\frac{\delta(x)}{2})\cap B\left(y,\frac{\delta(x)}{2}\right)=\varnothing$. Система $\left\{B\left(x,\frac{\delta(x)}{2}\right),x\in K\right\}$ — открытое покрытие компакта K, следовательно, существует конечное подпокрытие $\left\{B\left(x_k,\frac{\delta(x_k)}{2}\right),k=1,\ldots,m\right\}$. Положим $\delta:=\min_{k=1,\ldots,m}\frac{\delta(x_k)}{2}$. Тогда $B(y,\delta)\cap b(x_k,\delta)=\varnothing$ $\forall k=1,\ldots,m\Rightarrow B(y,\delta)\cap K=\varnothing\Rightarrow B(y,\delta)\subset CK$

В итоге, $\forall y \in CK \exists O(y) \subset CK \blacktriangleleft$

Замечание: Обратное, вообще говоря, неверно (см. ниже).

Теорема 3. $A \subset K \subset X, K - \kappa o \lambda n a \kappa m, A - \beta a \lambda \kappa \kappa + \gamma m o \Rightarrow A - \kappa o \lambda n a \kappa m.$

▶ Пусть $\{U_{\alpha}\}$ — открытое покрытие A. Рассмотрим систему $\{U_{\alpha}, CA\}$ — открытое покрытие всего \mathbb{X} , и в частности открытое покрытие компакта K. В таком случае, существует конечное подпокрытие $\{U_{\alpha}^{(k)}, CA, k=1, \ldots, m\}$ компакта K. Но $A \subset K \Rightarrow A \subset \bigcup_{k=1}^m U_{\alpha}^{(k)}$ — конечное подпокрытие $A \blacktriangleleft$

Пункт 2. Компактность в \mathbb{R}^n

Вектор
$$x \in \mathbb{R}^n$$
 записывается как (x_1,\dots,x_n) или $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Определение 1. Множество

$$I := \left\{ x \in \mathbb{R}^n \mid a_k \le x_k \le b_k, a_k < b_k, k = 1, \dots, n \right\}$$

называется (n-мерной) клеткой (брусом, параллелепипедом, замкнутым промежутком). I — обобщенный отрезок для $n \ge 2$.

Теорема 1 (о системе вложенных клеток).

 $\left\{I_m, m \in \mathbb{N}\right\} - cистема$ вложенных клеток $\Rightarrow \bigcap_{m=1}^{\infty} I_m \neq \varnothing$

▶

$$I_m = [a_1^{(m)}, b_1^{(m)}] \times [a_2^{(m)}, b_2^{(m)}] \times \ldots \times [a_n^{(m)}, b_n^{(m)}]$$

Для произвольного $k=1,\ldots,n$ система отрезков $\left\{[a_k^{(m)},b_k^{(m)}],m\in\mathbb{N}\right\}$ является системой вложенных отрезков. Следовательно, по лемме Кантора о вложенных отрезках, $\exists\, c_k\in\bigcap_{m=1}^\infty [a_k^{(m)},b_k^{(m)}]\Rightarrow$ точка $c:=(c_1,\ldots,c_n)\in I_m\;\forall\, m\in\mathbb{N}\Rightarrow c\in\bigcap_{m=1}^\infty I_m$

Теорема 2 (компактность n-мерной клетки).

I-n-мерная клетка $\Rightarrow I-$ компакт.

▶ От противного: пусть существует открытое покрытие $\{U_{\alpha}\}$ клетки I, не допускающее выделения конечного подпокрытия. Для всех $k=1,\ldots,n$ разделим $[a_k,b_k]$ пополам \Rightarrow получим 2^n меньших клеток. Обозначим I_2 ту клетку, которая не допускает конечного подпокрытия.

Продолжая этот процесс, получаем с-му вложенных клеток $\{I_m, m \in \mathbb{N}\}, I_1 := I$. По Т1, $\exists c \in I_m \ \forall m \in \mathbb{N}$. Имеем: $c \in I \Rightarrow \exists \alpha \mid c \in U_\alpha$ — открыто $\Rightarrow \exists O(c) \subset U_\alpha \Rightarrow \exists m \in \mathbb{N} \mid I_m \subset O(c) \subset U_\alpha \Rightarrow$ клетка I_m покрытвается одним открытым множеством U_α — противоречие с определением $I_m \Rightarrow \{U_\alpha\}$ допускает выделение конечного подпокрытия. \blacktriangleleft

Теорема 3 (критерий компактности в \mathbb{R}^n).

Пусть $K \subset \mathbb{R}^n$. Тогда K — компакт $\Leftrightarrow K$ ограничено и замкнуто.

▶ 1) ⇒: Доказано ранее.

2) \equiv : Пусть K ограничено и замкнуто. Т.к. K ограничено, то \exists клетка $I \mid K \subset I$. Имеем: K — замкнутое подмножество компакта. По Т3 п.1, K — компакт. \blacktriangleleft

Замечание: $K \subset \mathbb{X}$ — метр. пр-во. K ограничено и замкнуто $\stackrel{\text{в.г.}}{\Rightarrow} K$ — компакт.

Например, пусть \mathbb{X} — множество всех ограниченных последовательностей $x=(x_1,x_2,\ldots,x_k,\ldots)$ с нормой $\|x\|:=\sup |x_k|$ и метрикой $\rho(x,y):=\|x-y\|$

Рассмотрим множество $K:=\{e^{(m)}\in\mathbb{X}, m\in\mathbb{N}\}$, где $e^{(1)}:=(1,0,\dots,0,\dots),$..., $e^{(m)}:=(\underbrace{0,0,\dots,1},0,\dots),$...

Имеем: K — ограничено, т.к. $\|e^{(m)}\| = 1 \ \forall m; K$ — замкнуто, т.к. $K' = \varnothing$. В с. д., $\forall m \in \mathbb{N} \ \mathring{O}_{1/2}(e^{(m)}) \cap K = \varnothing$, т.к. $\|e^{(m)} - e^{(l)}\| = 1$ при $m \neq l \Rightarrow K' \subset K \Rightarrow K$ — замк. Но K — не компакт: рассм. с-му $\{O_{1/2}(e^{(m)}), m \in \mathbb{N}\}$ —открытое покрытие K. Предп., что \exists конеч. п-ие $\{O_{1/2}(e^{(m_s)}), s = 1, \ldots, l\}(*)$ и рассм. $e^{(m_0)}, m_0 \notin \{m_1, \ldots, m_l\} \Rightarrow \|e^{(m_0)} - e^{(m_s)}\| = 1 > 1/2$, т.е. $e^{(m_0)} \notin (*)$

§7. Непрерывные функции на компакте

Пункт 1. Сохранение компактности при непрерывном отображении

Замечание: $f(A \cup B) = f(A) \cup f(B)$

Рассмотрим два метрических пространства $(X_1, \rho_1), (X_2, \rho_2)$

Теорема 1 (о сохранении компактности при непрерывном отображении).

Пусть $K \subset \mathbb{X}_1, K - \kappa$ омпакт, $f: K \to \mathbb{X}_2, f \in \mathcal{C}(K)$.

Тогда f(K) — компакт в \mathbb{X}_2 .

▶ Пусть $\{V_{\alpha}\}$ — произвольное открытое покрытие f(K). Рассмотрим произвольно фиксированный $x \in K$, тогда $f(x) \in f(K) \Rightarrow \exists \alpha \mid f(x) \in V\alpha \Rightarrow \exists O\big(f(x)\big) \subset V_{\alpha}$, т.к. V_{α} — открыто. В силу непрерывности f в точке x, для данной O(f(x))

$$\exists O(x) \mid f(O(x) \cap K) \subset O(f(x)) \subset V_{\alpha} \tag{1}$$

Рассмотрим систему $\{O(x), x \in K\}$ — открытое покрытие K. Т.к. K — компакт, то можно выделить конечное подпокрытие $\{O(x_i), i=1,\ldots,m\} \mid K \subset \bigcup_{i=1}^m O(x_i)$. Тогда

$$f(K) = f\left(\bigcup_{i=1}^{m} O(x_i) \cap K\right) = \bigcup_{i=1}^{m} f\left(O(x_i) \cap K\right) \subset \bigcup_{i=1}^{m} V_{\alpha}^{(i)}$$

Получили $\left\{V_{\alpha}^{(i)}, i=1,\ldots,m\right\}$ — конечное подпокрытие \blacktriangleleft

Следствия:

- 1) Условия $T \Rightarrow f(K)$ ограниченное множество $\Rightarrow f$ ограниченное отображение (см. 1-ую Т. Вейерштрасса).
- 2) Условия Т, $\mathbb{X}_2 = \mathbb{R}$, т.е. $f: K \to \mathbb{R} \text{функция} \Rightarrow \exists x_1, x_2 \in K \mid f(x_1) = \sup_K f, f(x_2) = \inf_K f$ sup существует в силу следствия 1), обозначим $y = \sup_K f$. Тогда, согласно критерию супремума, $\exists y_n \in f(K), n \in \mathbb{N} \mid |y y_n| < \frac{1}{n} \Rightarrow y_n \to y \stackrel{\S 6 \text{ п.1 л.1}}{\Rightarrow} y \in \left[f(K)\right]' \subset f(K)$, т.к. f(K) замкнуто $\Rightarrow \exists x \in K \mid f(x) = y$ Аналогично для inf \blacktriangleleft

Пункт 2. Равномерная непрерывность

Рассмотрим два метрических пространства $(X_1, \rho_1), (X_2, \rho_2)$

Определение 1.

Пусть $A \subset \mathbb{X}_1, f : A \to \mathbb{X}_2$. Тогда f равномерно непрерывна на $A \stackrel{\text{def}}{\Leftrightarrow}$

$$\stackrel{\mathrm{def}}{\Leftrightarrow} orall \, arepsilon > 0 \mid
ho_2ig(f(x),f(y)ig) < arepsilon \, orall x,y \in A \,\, c \,\, y$$
словием $ho_1(x,y) < \delta$

Теорема 1. Пусть $K \subset \mathbb{X}_1, K$ — компакт, $f: K \to \mathbb{X}_2, f \in \mathcal{C}(K)$. Тогда f равномерно непрерывна на K.

▶ Зафиксируем произвольное $\varepsilon > 0$. Т.к. $f \in \mathcal{C}(K)$, то

$$\forall x \in K \exists \delta(x) > 0 \mid \rho_2(f(x'), f(x)) < \frac{\varepsilon}{2} \forall x' \in K$$
с усл. $\rho_1(x, x') < \delta(x)$

Рассмотрим систему окрестностей $\left\{O_{\delta(x)/2}(x), x \in K\right\}$ — открытое покрытие компакта $K \Rightarrow \exists$ конечное подпокрытие $\left\{O_{\delta_i/2}(x_i), i=1,\ldots,m\right\}$, где $\delta_i := \delta(x_i)$. Следуя традиции, положим $\delta := \min_{i=1,\ldots,m} \delta_i/2$.

Теперь пусть $x,y\in K$ с условием $\rho_1(x,y)<\delta.$ Так как $x\in K$, то $\exists\,i\in\{1,\ldots,m\}\mid x\in O_{\delta_i/2}(x_i).$ Тогда

$$\rho_1(x_i, y) \leq \underbrace{\rho_1(x_i, x)}_{<\delta_i/2} + \underbrace{\rho_1(x, y)}_{<\delta} < \delta_i/2 + \delta \leq \delta_i \Rightarrow$$

$$\Rightarrow y \in O_{\delta_i}(x_i) \Rightarrow \rho_2(f(x_i), f(y)) < \frac{\varepsilon}{2}$$

Поэтому $\rho_2\big(f(x),f(y)\big) \le \rho_2\big(f(x),f(x_i)\big) + \rho_2\big(f(x_i),f(y)\big) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

$\S 8$. Непрерывные функции на связном множестве в \mathbb{R}^n

I — промежуток в $\mathbb{R} \stackrel{\mathrm{def}}{\Leftrightarrow} I$ — полуинтервал \vee I — интервал \vee I — отрезок.

Определение 1. Пусть I — промежуток в \mathbb{R} .

- 1) <u>Непрерывное</u> отображение $\varphi: I \to \mathbb{R}^n \stackrel{\text{def}}{\Leftrightarrow} \boxed{nymb}$ в \mathbb{R}^n
- 2) Если $I=[\alpha,\beta]$, то точки $\varphi(\alpha),\varphi(\beta)$ называются $\boxed{$ концами $\boxed{}$ nymu

Определение 2. Пусть $A \subset \mathbb{R}^n$. Тогда $A - \boxed{$ (линейно) связно $} \stackrel{\mathrm{def}}{\Leftrightarrow} \forall \, a,b \in A$ $\exists \, nymb \, \varphi : [\alpha,\beta] \to A \mid \varphi(\alpha) = a, \varphi(\beta) = b$

Теорема 1 (о промежуточных значениях непрерывной функции). Пусть $A \subset \mathbb{R}^n, A-c$ вязно, $f:A \to \mathbb{R}, f \in \mathcal{C}(A)$. Пусть $a,b \in A, f(a) < f(b)$. Тогда $\forall M \in (f(a),f(b)) \; \exists \, c \in A \mid f(c)=M$

▶ Пусть $M \in (f(a), f(b))$. Рассмотрим композицию $f \circ \varphi : [\alpha, \beta] \to f(A) \subset \mathbb{R}$. Тогда, по Т. о непрерывности композиции, $f \circ \varphi \in \mathcal{C}[\alpha, \beta]$, причём

$$(f \circ \varphi)(\alpha) = f(a) < f(b) = (f \circ \varphi)(\beta).$$

Используя Т. о промежуточных значениях для $f \circ \varphi$ (1 сем., Часть 1), получим:

$$\exists \gamma \in (\alpha, \beta) \mid (f \circ \varphi)(\gamma) = f(\underbrace{\varphi(\gamma)}_{=:c}) = M$$

Это означает, что $\exists\,c\in A\mid f(c)=M$ \blacktriangleleft

Глава 2. Дифференциальное исчисление функций многих переменных

§1. Производные и дифференциалы первого порядка

Пункт 1. Частные производные

Определение 1.

Пусть $A \subset \mathbb{R}^n, A = A_i$ (т.е. A открыто), $x^0 = (x_1^0, \dots, x_n^0) \in A, f : A \to \mathbb{R}$. Тогда [частной производной] f по x_k ($k = 1, \dots, n$) в точке x^0 называется

$$\frac{\partial f}{\partial x_k}(x^0) = f'_{x_k}(x^0) = \partial_k f(x^0) := \lim_{h \to 0} \frac{f(x_1^0, \dots, x_k^0 + h, \dots, x_n^0) - f(x_1^0, \dots, x_k^0, \dots, x_n^0)}{h},$$

если этот предел существует.

Замечание: $\exists \frac{\partial f}{\partial x_k}(x^0) \ \forall \ k=1,\ldots,n \ \stackrel{\text{в.р.}}{\Rightarrow} \ f \in \mathcal{C}(x^0)$. Например, для n=2

$$f(x,y) := \begin{cases} 1, xy \neq 0 \\ 0, xy = 0 \end{cases} \Rightarrow f \notin \mathcal{C}(0,0), \text{ Ho } \exists \frac{\partial f}{\partial x}(0,0) = 0, \frac{\partial f}{\partial y}(0,0) = 0$$

Пункт 2. Дифференциал первого порядка

Пусть
$$A \subset \mathbb{R}^n, A = A_i, x^0 \in A$$

Определение 1. Пусть $f: A \to \mathbb{R}$. Тогда:

1) f оифференцируема в точке $x^0 \in A \stackrel{\text{def}}{\Leftrightarrow}$

$$\stackrel{\text{def}}{\Leftrightarrow} f(x) - f(x^0) = \sum_{k=1}^{n} \lambda_k (x_k - x_k^0) + o(\|x - x^0\|) \ npu \ x \to x^0, \tag{1}$$

где $\lambda_k \in \mathbb{R}$ — некоторые постоянные. Обозначение: $f \in \mathcal{D}(x^0)$

2) Пусть $f \in \mathcal{D}(x^0)$. Тогда выражение (главная линейная часть приращения)

$$df(x^0) := \sum_{k=1}^n \lambda_k (x_k - x_k^0)$$

называется $\boxed{\partial u \phi \phi e p e н u u a n o M} \phi y h k u u u f в точке <math>x^0$.

Замечание: п. 1) в опр. означает следующее: $\exists O(x^0) \mid$ верно (1) $\forall x \in O(x^0)$.

Теорема 1 (непрерывность дифференцируемой функции).

$$f \in \mathcal{D}(x^0) \Rightarrow f \in \mathcal{C}(x^0)$$

▶ $x^0 \in A_i \Rightarrow x^0 \in A' \Rightarrow \Big(f \in \mathcal{C}(x^0) \Leftrightarrow \lim_{x \to x^0} f(x) = f(x^0) \Big)$. Имеем:

$$f(x) - f(x^0) = \underbrace{\sum_{k=1}^{n} \lambda_k (x_k - x_k^0)}_{\to 0} + \underbrace{o(\|x - x^0\|)}_{\to 0} \to 0$$
 при $x \to x^0$

Это означает, что $\lim_{x \to x^0} (f(x) - f(x^0)) = 0$

Замечание: $\exists \frac{\partial f}{\partial x_k}(x^0) \ \forall \ k=1,\ldots,n \stackrel{\text{в.г.}}{\Rightarrow} f \in \mathcal{D}(x^0)$ (см. замечание в п.1 и Т1)

Теорема 2 (необходимое условие дифференцируемости).

▶ Имеем:

$$\frac{\partial f}{\partial x_k}(x^0) = \lim_{h \to 0} \frac{f(x_1^0, \dots, x_k^0 + h, \dots, x_n^0) - f(x_1^0, \dots, x_k^0, \dots, x_n^0)}{h} \stackrel{\text{(1)}}{=} \lim_{h \to 0} \frac{\lambda_k \cdot h + o(\|h\|)}{h} = \lambda_k$$

$$\forall k = 1, \dots, n \blacktriangleleft$$

Теорема 3.
$$\begin{array}{ll}
1) \exists O(x^0) \mid \exists \frac{\partial f}{\partial x_k}(x) \, \forall \, k = 1, \dots, n, \forall \, x \in O(x^0) \\
2) \frac{\partial f}{\partial x_k} \in C(x^0) \, \forall \, k = 1, \dots, n
\end{array}$$

▶ Для $x \in O(x^0)$ имеем:

$$\begin{split} f(x)-f(x^0) &= f(x_1,x_2) - f(x_1^0,x_2^0) = \left[f(x_1,x_2) - f(x_1^0,x_2) \right] + \left[f(x_1^0,x_2) - f(x_1^0,x_2^0) \right] = \\ &= \mid \text{ Т. Лагранжа } \mid = \\ &= \frac{\partial f}{\partial x_1} \left(x_1^0 + \theta(x_1 - x_1^0), x_2 \right) \cdot (x_1 - x_1^0) + \frac{\partial f}{\partial x_2} \left(x_1^0, x_2^0 + \theta(x_2 - x_2^0) \right) \cdot (x_2 - x_2^0) = \\ &= \left| \text{ используем } \frac{\partial f}{\partial x_k} \in C(x^0) \right| = \\ &= \left[\frac{\partial f}{\partial x_1} (x_0) + o(1) \right] (x_1 - x_1^0) + \left[\frac{\partial f}{\partial x_2} (x_0) + o(1) \right] (x_2 - x_2^0) = \\ &= \frac{\partial f}{\partial x_1} (x^0) \cdot (x_1 - x_1^0) + \frac{\partial f}{\partial x_2} (x^0) \cdot (x_2 - x_2^0) + o(\|x - x^0\|) \end{split}$$

Для $n \geq 3$ доказательство аналогично. \triangleleft

Замечание: Пусть $\exists \frac{\partial f}{\partial x_k}(x) \ \forall \ k=1,\ldots,n, \forall \ x \in O(x^0) \ \text{и} \ f \in \mathcal{C}(x^0) \overset{\text{в.г.}}{\Rightarrow} f \in \mathcal{D}(x^0)$

Например, $n=2, f(x,y)=\sqrt[n]{|xy|}, (x,y)\in\mathbb{R}^2$

 $f \in \mathcal{C}(0,0)$, частные производные по x,y разрывны в (0,0) и обе равны 0 в этой точке. Если бы f была дифференцируема в (0,0), то $f(x,y)-0=0+o(\|(x,y)\|)$, однако $f(x,y)-0=\sqrt{|xy|}=x$, если y=x>0. Следовательно, $f \notin \mathcal{D}(0,0)$

Определение 2. Пусть $A \subset \mathbb{R}^n$, $x_0 \in A_i = A$, $f: A \to \mathbb{R}^m$. Тогда $f - \partial u \phi \phi$ еренцируема в точке $x^0 \stackrel{\text{def}}{\Leftrightarrow} f_i: A \to \mathbb{R}$ дифференцируема в т. $x^0, i = 1, \ldots, m$

Пусть
$$f: x \in A \to f(x) = (f_1(x), \dots, f_m(x)) \in \mathbb{R}^m$$
, пусть $f \in \mathcal{D}(x^0) \Rightarrow \exists \frac{\partial f_i}{\partial x_j}(x_0)$
 $i = 1, \dots, m, j = 1, \dots, m$

Матрицей Якоби называется матрица

$$\left(\frac{\partial f_i}{\partial x_j}(x_0)\right) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Если m=n, то определитель матрицы Якоби называется якобианом $\frac{\partial (f_1,\ldots,f_n)}{\partial (x_1,\ldots,x_n)}$

Пример: В полярных координатах $(x, y) = (r \cos \varphi, r \sin \varphi)$

$$\frac{\partial(x,y)}{\partial(r,\varphi)} = \begin{vmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{vmatrix} = r$$

§2. Дифференцирование сложной функции

Теорема 1. Пусть $A \subset \mathbb{R}^n, A = A_i, x_0 \in A, B \subset \mathbb{R}^m, B = B_i, y_0 \in B.$ $f: A \to B, g: B \to \mathbb{R}, y^0 = f(x^0), \text{ причём } f \in \mathcal{D}(x^0), g \in \mathcal{D}(y^0).$ Тогда $h:=g \circ f \in \mathcal{D}(x^0).$

▶ Запишем $h(x) - h(x^0)$ в случае n = m = 2 для простоты:

$$\begin{split} g\big(f(x)\big) - g\big(f(x^0)\big) &= g(y) - g(y^0) = |g \in \mathcal{D}(y^0)| = \\ &= \frac{\partial g}{\partial y_1}(y^0) \Big[f_1(x) - f_1(x^0) \Big] + \frac{\partial g}{\partial y_2}(y^0) \Big[f_2(x) - f_2(x^0) \Big] + o\big(f(x) - f(x^0)\big) = |f \in \mathcal{D}(x^0)| = \\ &= \frac{\partial g}{\partial y_1}(y^0) \Big[\frac{\partial f_1}{\partial x_1}(x^0)(x_1 - x_1^0) + \frac{\partial f_1}{\partial x_2}(x^0)(x_2 - x_2^0) + o(\|x - x^0\|) \Big] + \\ &+ \frac{\partial g}{\partial y_2}(y^0) \Big[\frac{\partial f_2}{\partial x_1}(x^0)(x_1 - x_1^0) + \frac{\partial f_2}{\partial x_2}(x^0)(x_2 - x_2^0) + o(\|x - x^0\|) \Big] + \underbrace{o\big(\|f(x) - f(x^0)\|\big)}_{o(\|x - x^0\|)} = \\ &= \Big[\frac{\partial g}{\partial y_1}(y^0) \cdot \frac{\partial f_1}{\partial x_1}(x^0) + \frac{\partial g}{\partial y_2}(y^0) \cdot \frac{\partial f_2}{\partial x_1}(x^0) \Big] (x_1 - x_1^0) + \\ &+ \Big[\frac{\partial g}{\partial y_1}(y^0) \cdot \frac{\partial f_1}{\partial x_2}(x^0) + \frac{\partial g}{\partial y_2}(y^0) \cdot \frac{\partial f_2}{\partial x_2}(x^0) \Big] (x_2 - x_2^0) + o(\|x - x^0\|) \text{ при } x \to x^0 \end{split}$$

Таким образом, $h \in \mathcal{D}(x^0)$

Следствия:

1) пусть выполнены условия теоремы, n=m=2. Тогда

$$\frac{\partial h}{\partial x_1}(x^0) = \frac{\partial g}{\partial y_1}(y^0) \cdot \frac{\partial f_1}{\partial x_1}(x^0) + \frac{\partial g}{\partial y_2}(y^0) \cdot \frac{\partial f_2}{\partial x_1}(x^0) = \frac{\partial g}{\partial y_1} \cdot \frac{\partial y_1}{\partial x_1} + \frac{\partial g}{\partial y_2} \cdot \frac{\partial y_2}{\partial x_1} + \frac{\partial g}{\partial y_2} \cdot \frac{\partial y_2}{\partial x_1} + \frac{\partial g}{\partial y_2} \cdot \frac{\partial g}{\partial y_2} \cdot \frac{\partial g}{\partial y_2} + \frac{\partial g}{\partial y_2} \cdot \frac{\partial g}{\partial$$

В общем случае,

$$\frac{\partial h}{\partial x_i} = \sum_{j=1}^m \frac{\partial g}{\partial y_j} \cdot \frac{\partial y_j}{\partial x_i}$$

т.е.

$$\left(\frac{\partial h}{\partial x_1}, \dots, \frac{\partial h}{\partial x_n}\right) = \left(\frac{\partial g}{\partial y_1}, \dots, \frac{\partial g}{\partial y_m}\right) \cdot \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

2) Инвариантность формы первого дифференциала

$$\mathrm{d}h = \frac{\partial g}{\partial y_1} \cdot \mathrm{d}f_1 + \frac{\partial g}{\partial y_2} \cdot \mathrm{d}f_2$$

3) Правила дифференцирования линейной комбинации, произведения и частного записываются аналогично случаю одной переменной.

§3. Производная по направлению. Градиент

Определение 1. Пусть $A \subset \mathbb{R}^n, A = A_i, x^0 \in A, f : A \to \mathbb{R}, \ell = (\cos \alpha_1, \dots, \cos \alpha_n) = (\ell_1, \dots, \ell_n)$. Тогда производной по направлению называется

$$\frac{\partial f}{\partial \ell}(x^0) := \lim_{t \to 0} \frac{f(x^0 + t\ell) - f(x^0)}{t},$$

если этот предел существует.

Теорема 1. Пусть $A \subset \mathbb{R}^n, A = A_i, x^0 \in A, f : A \to \mathbb{R}, f \in \mathcal{D}(x^0).$ Тогда $\forall \ell = (\cos \alpha_1, \dots, \cos \alpha_n) = (\ell_1, \dots, \ell_n)$

$$\exists \frac{\partial f}{\partial \ell}(x^0) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot \cos \alpha_k$$

>

$$f \in \mathcal{D}(x^0) \Rightarrow \lim_{t \to 0} \frac{f(x^0 + t\ell) - f(x^0)}{t} = \lim_{t \to 0} \frac{\sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot (x_k - x_k^0) + o(\|x - x^0\|)}{t} = \lim_{t \to 0} \frac{\sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot t \cos \alpha_k}{t}$$

$$= |\text{ T.K. } x_k = x_k^0 + t \cos \alpha_k| = \lim_{t \to 0} \left[\frac{\sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot t \cos \alpha_k}{t} + o(1) \right] = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot \cos \alpha_k$$

4

Определение 2.

Пусть $A \subset \mathbb{R}^n, A = A_i, x^0 \in A, f : A \to \mathbb{R}$ и $\exists \frac{\partial f}{\partial x_k}(x^0) \ \forall k = 1, \dots, n$. Тогда градиентом f в m. x^0 называется вектор

grad
$$f(x^0) = \nabla f(x^0) := \left(\frac{\partial f}{\partial x_1}(x^0), \dots, \frac{\partial f}{\partial x_n}(x^0)\right)$$

Замечание:

1) В условиях Опр.2 и $f \in \mathcal{D}(x^0)$ утв. Т1 запишется как скалярное произведение

$$\frac{\partial f}{\partial \ell}(x^0) = \left(\operatorname{grad} f(x^0), \ell\right) \tag{1}$$

2) Формула (1) $\Rightarrow \frac{\partial f}{\partial \ell}(x^0) = |\operatorname{grad} f(x^0)| \cdot \cos \alpha$, где α — угол между направлением градиента и ℓ . Следовательно, наибольшая скорость изменения f достигается на $\ell = \operatorname{grad} f(x^0)$.

§4. Производные и дифференциалы высших порядков

Пункт 1. Теоремы о смешанных производных

Определение 1. Пусть $A_i=A, x^0\in A, f:A\to \mathbb{R},$ пусть для $i=1,\dots,n$ $\exists \frac{\partial f}{\partial x_i}:O(x^0)\to \mathbb{R}.$ Тогда

1)
$$\frac{\partial^2 f}{\partial x_i \partial x_i}(x^0) := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(x^0)$$
, ecau $j = 1, \dots, n$

2)
$$i \neq j \Rightarrow \frac{\partial^2 f}{\partial x_i \partial x_j}(x^0) = f''_{x_i x_j}(x^0) = \partial_{ij} f(x^0)$$
 называется смешанной производной.

3) При
$$i=j$$
 обознач. $\frac{\partial^2 f}{\partial x_i \partial x_i}(x^0)=:\frac{\partial^2 f}{\partial x_i^2}(x^0)$

Определение 2.

1) Определение 1 обобщается на производную любого порядка ≥ 3

2)
$$k = (k_1, \ldots, k_n), k_i \in \mathbb{Z}_+ -$$
 мультииндекс

$$\bullet |k| := k_1 + \ldots + k_n$$

•
$$\forall \sigma \in \mathbb{R}^n, \sigma^k := \sigma_1^{k_1} \cdot \ldots \cdot \sigma_n^{k_n}$$

•
$$k! = k_1! \dots k_n!$$

•
$$\partial^k f(x^0) := \frac{\partial^k f}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}(x^0)$$

Замечание: Возможно, что $\frac{\partial^2 f}{\partial x_i \partial x_j}(x^0) \neq \frac{\partial^2 f}{\partial x_j \partial x_i}(x^0)$. Например,

$$f(x,y) := \begin{cases} xy \cdot \frac{x^2 - y^2}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

Тогда $f_{xy}''(0,0) \neq f_{yx}''(0,0)$

$$\begin{split} \frac{\partial^2 f}{\partial x \partial y}(0,0) &:= \frac{\partial}{\partial x} \bigg(\frac{\partial f}{\partial y} \bigg)(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x} = \\ \text{Ho: } x \neq 0 &: \frac{\partial f}{\partial y}(x,0) = \lim_{y \to 0} \frac{f(x,y) - f(x,0)}{y} = \lim_{y \to 0} x \cdot \frac{x^2 - y^2}{x^2 + y^2} = x \\ x &= 0 &: \frac{\partial f}{\partial y}(0,0) = 0 \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0}{y} = 0 \Rightarrow \\ &\Rightarrow \frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{x - 0}{x} = 1 \end{split}$$

С другой стороны, аналогично получаем $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$ (см. Рис.) \blacktriangleleft

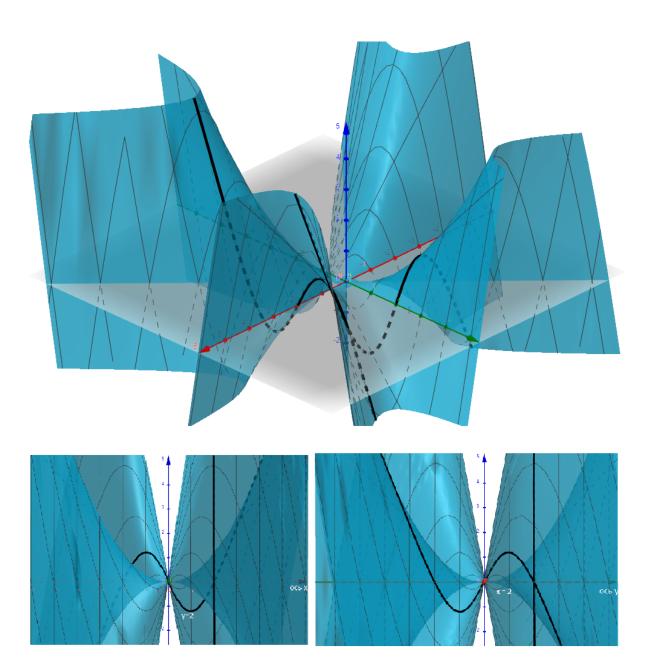


Рис. 4. Рис. к замечанию

Теорема 1 (Шварца). Пусть
$$x^0 \in \mathbb{R}^2$$
, $f: O(x^0) \to \mathbb{R}$,
$$\exists \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial^2 f}{\partial x_1 \partial x_2}, \frac{\partial^2 f}{\partial x_2 \partial x_1}: O(x^0) \to \mathbb{R}, \text{ причём } \frac{\partial^2 f}{\partial x_1 \partial x_2}, \frac{\partial^2 f}{\partial x_2 \partial x_1} \in \mathcal{C}(x^0). \text{ Тогда}$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2}(x^0) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(x^0)$$
(1)

▶ Введём функцию

$$F(h_1,h_2) := f(x_1^0+h_1,x_2^0+h_2) - f(x_1^0+h_1,x_2^0) - f(x_1^0,x_2^0+h_2) + f(x_1^0,x_2^0),$$
 где h_1,h_2 — достаточно малы.

1) Определим функцию одной переменной

$$\varphi(t) := f(x_1^0 + th_1, x_2^0 + h_2) - f(x_1^0 + th_1, x_2^0)$$

Тогда

$$F(h_1, h_2) = \varphi(1) - \varphi(0) = \varphi'(\theta_1)(1 - 0) = \varphi'(\theta_1) =$$

$$= \left[\frac{\partial f}{\partial x_1} (x_1^0 + \theta_1 h_1, x_2^0 + h_2) - \frac{\partial f}{\partial x_1} (x_1^0 + \theta_1 h_1, x_2^0) \right] h_1 =$$

$$= \left[\frac{\partial^2 f}{\partial x_2 \partial x_1} (x_1^0 + \theta_1 h_1, x_2^0 + \theta_2 h_2) \right] \underbrace{(x_2^0 + h - x_2^0)}_{=h_2} h_1, \text{ где } 0 < \theta_1, \theta_2 < 1$$

2) Определим функцию

$$\psi(t) := f(x_1^0 + h_1, x_2^0 + th_2) - f(x_1^0, x_2^0 + th_2)$$

Тогда в этом случае

$$F(h_1,h_2) = \psi(1) - \psi(0) = \psi'(\xi_2)(1-0) = \psi'(\xi_2) =$$

$$= \left[\frac{\partial f}{\partial x_2}(x_1^0 + h_1, x_2^0 + \xi_2 h_2) - \frac{\partial f}{\partial x_2}(x_1^0, x_2^0 + \xi_2 h_2)\right] h_2 =$$

$$= \left[\frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1^0 + \xi_1 h_1, x_2^0 + \xi_2 h_2)\right] h_1 h_2, \text{ где } 0 < \xi_1, \xi_2 < 1 \ (h_1, h_2 \neq 0) \stackrel{1),2)}{\Rightarrow}$$

$$\stackrel{1),2)}{\Rightarrow} \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1^0 + \xi_1 h_1, x_2^0 + \xi_2 h_2) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1^0 + \theta_1 h_1, x_2^0 + \theta_2 h_2)$$

Следовательно, переходя к lim при $h_1, h_2 \to 0$ и используя непрерывность смешанных производных в т. (x_1^0, x_2^0) , имеем равенство (1). \blacktriangleleft

Теорема 2 (Юнга). Пусть $x^0 \in \mathbb{R}^2, f: O(x^0) \to \mathbb{R},$ $\exists \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}: O(x^0) \to \mathbb{R}, \ npuчём \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \in \mathcal{D}(x^0).$ Тогда

$$\frac{\partial^2 f}{\partial x_1 \partial x_2}(x^0) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(x^0)$$

▶ Не требуется в рамках данного курса, см. А.С.Ч., Л.23 ◀

Замечание: Из Т2 не следует Т1, а из Т1 не следует Т2.

Определение 3. Пусть $A = A_i \subset \mathbb{R}^n, f : A \to \mathbb{R}, m \in \mathbb{N}$.

$$f \in \mathcal{C}^m(A) \stackrel{\text{def}}{\Leftrightarrow} \partial^k f \in \mathcal{C}(A) \ \forall \ k \mid |k| \le m$$

 $m.e.\ \partial^k f(x^0)$ не зависит от порядка дифференцирования по x_1,\ldots,x_k

- ▶ 1) $n \ge 3, |k| = 2$ следует из Т1
- 2) $n \ge 2, |k| \ge 3$ индукцией по числу m = |k|

Пункт 2. Дифференциалы высших порядков

Определение 1. Пусть $A \subset \mathbb{R}^n, A = A_i, x^0 \in A, f : A \to \mathbb{R}$

- 1) f дважды дифференцируема в т. $x^0 \stackrel{\text{def}}{\Leftrightarrow}$ функция $\mathrm{d} f: O(x^0) \to \mathbb{R}$ дифференцируема в x^0 . Обозначения: $f \in \mathcal{D}^2(x^0), \mathrm{d}^2 f(x^0) := \mathrm{d}(\mathrm{d} f)(x^0)$
- 2) f m раз дифференцируема в $m.x^0$ $(f \in \mathcal{D}^m(x^0)) \stackrel{\text{def}}{\Leftrightarrow}$ определена функция $d^{m-1}f: O(x^0) \to \mathbb{R}$, причём эта функция дифференцируема в x^0 , m.e. $\exists d(d^{m-1}f)(x^0) =: d^m f(x^0)$

Замечание:

1)
$$f \in \mathcal{D}^2(x^0) \Leftrightarrow \frac{\partial f}{\partial x_i} \in \mathcal{D}(x^0), i = 1, \dots, n$$

2)
$$f \in \mathcal{D}^m(x^0) \Leftrightarrow \partial^k f \in \mathcal{D}(x^0) \ \forall k \ ||k| = m - 1$$

3)
$$f \in \mathcal{D}^2(x^0) \Rightarrow \frac{\partial^2 f}{\partial x_1 \partial x_2}(x^0) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(x^0)$$
 (т. Юнга)

4)
$$f \in \mathcal{D}^2(x^0) \Rightarrow$$

$$\Rightarrow d^{2}f(x^{0}) = \sum_{i,j=1}^{n} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x^{0})dx_{i}dx_{j} = \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}dx_{i}\right)dx_{j} =$$

$$= \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{2}f$$

Пункт 3. Формулы Тейлора

Лемма 1. Пусть $x \in \mathbb{R}^n, k = (k_1, \dots, k_n)$ — мультииндекс. Тогда

$$(x_1 + \dots + x_n)^m = \sum_{|k|=m} \frac{m!}{k!} x^k = \sum_{|k|=m} \frac{m!}{k_1! \dots k_m!} x_1^{k_1} \cdot \dots \cdot x_n^{k_n} \ \forall \ m \in \mathbb{N}$$
 (1)

$$\blacktriangleright (x_1 + \ldots + x_n)^m = \sum_{|k|=m} A_k x^k$$
. Пусть $l = (l_1, \ldots, l_n), |l| = |k| - m$

Имеем: $\partial^l [(x_1 + \ldots + x_n)^m] = m!$ С другой стороны,

$$\partial^l \left[\sum_{|k|=m} A_k x^k \right] = A_k \prod_{i=1}^n k_i! = A_k k!$$

Значит, $A_k = \frac{m!}{k!} \blacktriangleleft$

Лемма 2. $f: O_{\varepsilon}(x^{0}) \to \mathbb{R}, x^{0} \in \mathbb{R}^{n}, f \in \mathcal{D}^{p}(O_{\varepsilon}(x^{0})), p \geq 1.$ Тогда, полагая $F(t) := f(x^{0} + th), t \in [-1 - \delta, 1 + \delta], h$ фикс., дост. мало

$$F^{(s)}(t) = \frac{\mathrm{d}^s F}{\mathrm{d}t^s}(x^0 + th) = \sum_{|k|=s} \frac{s!}{k!} h^k \partial^k f(x^0 + th), 1 \le s \le p$$
 (2)

▶ Имеем:

$$F^{(s)}(t) = \sum_{|k|=s} B_k h_1^{k_1} \cdot \ldots \cdot h_n^{k_n} \partial^k f(x^0 + th),$$
(3)

Коэффициенты B_k в (3) не зависят от f, x^0 . Рассмотрим $x^0 = (0, \dots, 0)$ и $f(x_1, \dots, x_n) = e^{x_1 + \dots + x_n}$. В этом случае

$$F(t) = e^{t(h_1 + \dots + h_n)}$$

$$F'(t) = (h_1 + \dots + h_n)e^{t(h_1 + \dots + h_n)}$$

$$\dots$$

$$F^{(s)} = (h_1 + \dots + h_n)^s e^{t(h_1 + \dots + h_n)} = \sum_{|k| = s} B_k h^k \partial^k f(x^0 + th) \Rightarrow$$

согласно лемме 1, $B_k = \frac{s!}{k!} \Rightarrow$ утверждение леммы 2 \blacktriangleleft

Теорема 1 (Формула Тейлора с остаточным членом в форме Лагранжа).

Пусть $f: O_{\varepsilon}(x^0) \to \mathbb{R}, f \in \mathcal{D}^{m+1}(O_{\varepsilon}(x^0)), m \geq 0$ Тогда $\exists \varepsilon > 0$

$$f(x) = f(x^{0}) + \sum_{s=1}^{m} \sum_{|k|=s} \frac{(x-x^{0})^{k}}{k!} \partial^{k} f(x^{0}) + \underbrace{\sum_{|k|=m+1} \frac{(x-x^{0})^{k}}{k!} \partial^{k} f(x^{0} + \theta(x-x^{0}))}_{=:r_{m+1}}, \theta \in (0,1)$$

▶ Положим $F(t) := f(x^0 + th)$, где $h := x - x^0, t \in [-1 - \delta, 1 + \delta], \delta := \frac{\varepsilon - \|h\|}{\|h\|}$.

Тогда $F \in \mathcal{D}^{m+1}(-1-\delta,1+\delta)$

Имеем: $F(0)=f(x^0), F(1)=f(x^0+h)=f(x).$ Из формулы Тейлора для функции одной переменной \Rightarrow

откуда следует утверждение теоремы ◀

Теорема 2 (Формула Тейлора с остаточным членом в форме Пеано). Пусть $f: O_{\varepsilon}(x^0) \to \mathbb{R}, f \in \mathcal{D}^m(x^0), m \geq 1 \ Tor\partial a$

$$f(x) = f(x^0) + \sum_{s=1}^{m} \sum_{|k|=s} \frac{(x-x^0)^k}{k!} \partial^k f(x^0) + o(\|x-x^0\|^m) \ npu \ x \to x^0$$

▶ $\underline{m=1}$: верно определение того, что $f\in\mathcal{D}(x^0)$ $m\geq 2$: положим

$$g(x) := f(x) - P_m(x), \ P_m(x) := f(x^0) + \sum_{s=1}^m \sum_{|k|=s} \frac{(x - x^0)^k}{k!} \partial^k f(x^0)$$

— полином Тейлора. Надо доказать, что $g(x) = o(\|x - x^0\|^m)$ при $x \to x^0$ Имеем:

- q(0) = 0
- $(\partial^l P_m)(x^0) = (\partial^l f)(x^0), 0 \le |l| \le m$ В самом деле, $|l| = 0 \Rightarrow P_m(x^0) = f(x^0)$

$$|l| = 1, \dots, m \Rightarrow [\partial^l (x - x^0)^k](x^0) = \begin{cases} 0, l \neq k \\ l_1! \dots l_k! = l!, l = k \end{cases}$$

• $g \in \mathcal{D}^{m-1} ig(O(x^0) ig)$. Тогда по Т1 (Т+Л)

$$g(x) = g(x^{0}) + \sum_{s=1}^{m-2} \sum_{|k|=s} \frac{(x-x^{0})^{k}}{k!} \partial^{k} g(x^{0}) + \sum_{|k|=m-1} \frac{(x-x^{0})^{k}}{k!} \partial^{k} g(x^{0} + \theta(x-x^{0})) =$$

$$= 0 + 0 + \sum_{|k|=m-1} \frac{(x-x^{0})^{k}}{k!} \partial^{k} g(x^{0} + \theta(x-x^{0})) =$$

$$= \sum_{|k|=m-1} o(\|x-x^{0}\|) \|x-x^{0}\|^{m-1} \frac{(x-x^{0})^{k}}{\|x-x^{0}\|^{m-1}} = o(1) \|x-x^{0}\|^{m} = o(\|x-x^{0}\|^{m})$$

Формулу Тейлора с остаточным членом в интегральной форме предлагается посмотреть в Зориче на странице 535.

§5. Локальный экстремум функций многих переменных

Определение 1. $f: A \to \mathbb{R}, A \subset \mathbb{R}^n, x^0 \in A_i$

1) $x^0 - \left[$ точка локального максимума (минимума) $\right] \stackrel{\text{def}}{\Leftrightarrow}$

$$\stackrel{\text{def}}{\Leftrightarrow} \exists O(x^0) \subset A \mid f(x) \le f(x^0) \left(f(x) \ge f(x^0) \right) \, \forall x \in O(x^0)$$

 $2) x^0 -$ $\boxed{moчка локального максимума (минимума)} \stackrel{\text{def}}{\Leftrightarrow}$

$$\stackrel{\text{def}}{\Leftrightarrow} \exists O(x^0) \subset A \mid f(x) < f(x^0) \left(f(x) > f(x^0) \right) \, \forall x \in O(x^0)$$

3) x^0- точка локального экстремума $\stackrel{\mathrm{def}}{\Leftrightarrow} x^0-$ т. лок. макс. или мин.

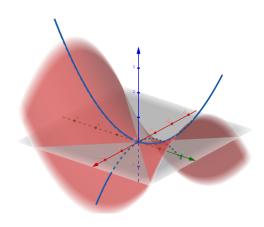
Теорема 1 (необходимое условие локального экстремума).

$$f:O(x^0) o\mathbb{R}, x^0$$
 — точка локального экстремума, $\exists \frac{\partial f}{\partial x_i}(x^0), i=1,\ldots,m\Rightarrow$ $\Rightarrow \frac{\partial f}{\partial x_i}(x^0)=0$

▶ Фиксируем произвольно $i = \{1, 2, ..., n\}$ и рассматриваем функцию одного переменного $x_i : F(x_i) = f(x_1, ..., x_i, ..., x_n)$. Тогда по Т. Ферма $F'(x_i^0) = \frac{\partial f}{\partial x_i}(x^0) = 0$ ◀

Замечание: 1)
$$f \in \mathcal{D}(x^0) \Rightarrow \forall \ell \frac{\partial f}{\partial \ell}(x^0) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(x^0) \cdot \cos \alpha_k = 0$$

- 2) В условии Т1 достаточно рассмотреть одну производную $\frac{\partial f}{\partial x_i}(x^0)$
- 3) $\operatorname{grad} f(x^0) = 0 \stackrel{\text{в.г.}}{\Rightarrow} x^0$ точка локального экстремума. Например, $f(x,y) = y^2 x^2$ (седло), т.(0,0) не явл. точкой локального экстремума.



Теорема 2 (достаточное условие локального экстремума).

Пусть $f: O(x^0) \to \mathbb{R}, f \in \mathcal{D}^2(x^0), \operatorname{grad} f(x^0) = 0$. Тогда

1) Если квадратичная форма

$$\varphi(h) := \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} h_{i} h_{j}$$

$$\tag{1}$$

положительно (отрицательно) определена, то x^0-m . лок. мин. (макс.)

- 2) Если квадратичная форма (1) меняет знак, то x^0 не явл. т. экстремума
- 1) Пусть квадратичная форма $\varphi(h)$ положительно определена. Предварительное замечание: Ф. Тейлора можно переписать в виде

$$f(x) = f(x^{0}) + \sum_{s=1}^{m} \frac{1}{s!} \left(\frac{\partial}{\partial x_{1}} h_{1} + \dots + \frac{\partial}{\partial x_{n}} h_{n} \right)^{s} f(x) + r_{m+1}(x, x^{0}), h_{i} = x_{i} - x_{i}^{0}$$

Далее,

$$f(x) - f(x^0) = f(x^0 + h) - f(x^0) = \left| \text{ так как } \frac{\partial f}{\partial x_i}(x^0) = 0 \right| =$$

$$= \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} h_i h_j + o(\|h\|^2) = \frac{1}{2} \|h\|^2 \left[\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \frac{h_i h_j}{\|h\| \|h\|} + o(1) \right] \text{ при } h \to 0$$

Кроме того, рассмотрим сферу S(0,1) — компакт, а значит

$$\exists m \in S(0,1) \mid m = \min_{S(0,1)} \varphi(h)$$

Имеем:

$$\varphi(h^*) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} h_i^* h_j^* \ge m > 0 \ \forall h^* \in S(0,1)$$

Поэтому

$$f(x^0+h)-f(x^0) \ge \frac{1}{2}\|h\|^2 \bigg[m+o(1) \bigg] > \frac{1}{2}\|h\|^2 > 0$$
 при $h \to 0$

Следовательно, x^0 — точка локального минимума.

2) Пусть теперь квадратичная форма (1) меняет знак. Тогда исходя из аналогичных п.1) выкладок, $\exists h^*_{max}, h^*_{min} \in S(0,1)$, при которых достигается положительное и отрицательное изменение значения функции.

§6 . Неявные функции

Пункт 1. Случай одного уравнения

Пусть $(x^0, y^0) \in \mathbb{R}^2$, задана функция $F(O(x^0, y^0)) \to \mathbb{R}$. Предполагаем, что $F(x^0, y^0) = 0$.

Определение 1. Пусть $\exists O(x^0), \exists f : O(x^0) \to \mathbb{R} \mid F(x, f(x)) = 0 \ \forall x \in O(x^0),$ тогда говорят, что уравнение F(x, y) = 0 задаёт пеявно функцию f.

Теорема 1.

$$\begin{array}{ll} 1)F \in \mathcal{C}^1\big(O(x^0,y^0)\big) & \exists \, O(x^0), \ \exists! \, f: O(x^0) \to \mathbb{R} \\ 2)F(x^0,y^0) = 0 & \Rightarrow \quad a)f(x^0) = y^0 \\ 3)\frac{\partial F}{\partial y}(x^0,y^0) > 0 & b)F\big(x,f(x)\big) = 0 \ \forall \, x \in O(x^0) \end{array}$$

▶

1)
$$\frac{\partial F}{\partial y}(x^0,y^0)>0\Rightarrow \exists$$
 квадрат с ц. в $(x^0,y^0),$ стор. $2h\mid \frac{\partial F}{\partial y}\geq m>0 \ \forall (x,y)\in K$

2) Имеем:
$$F(x^0, y^0) = 0, \frac{\partial F}{\partial y}(x^0, y) > 0 \Rightarrow F(x^0, y^0 - h) < 0, F(x^0, y^0 + h) > 0$$

3) Непрерывность по х даёт

a)
$$F(x^0, y^0 + h) > 0 \Rightarrow \exists \delta > 0 \\ F(x, y^0 - h) > 0 \\ \forall x \in [x^0 - \delta, x^0 + \delta]$$

6)
$$F(x^0, y^0 - h) < 0 \Rightarrow F(x, y^0 - h) < 0 \ \forall \ x \in [x^0 - \delta, x^0 + \delta]$$

- 4) Фиксируем произвольно $x\in (x^0-\delta,x^0+\delta)$ и рассматриваем отрезок l, соединяющий точки $A_-=(x,y^0-h)$ и $A_+=(x,y^0+h)$ Так как $F(A_-)<0, F(A_+)>0F$ возрастает по y (производная>0), то $\exists !y=y(x)\mid F(x,y(x))=0$
- 5) $\forall x \in (x^0 \delta, x^0 + \delta)$ опр. единственным образом $f(x) := y(x) \Rightarrow f$ задана неявно уравнением F(x, y) = 0.

Замечание:

- 1) Условия $\frac{\partial F}{\partial x} \in \mathcal{C}(O(x^0))$ можно заменить на $F \in \mathcal{C}(O(x^0))$
- 2) Условия $T \Rightarrow \exists O(x^0) f \in \mathcal{C}^1 (O(x^0))$
- 3) Теорема обобщается на случай, когда $x = (x_1, \dots, x_n)$

Пункт 2. Неявная функция для системы уравнений

Теорема 1. Пусть

1)
$$F, G \in C^1(O(x^0, y^0, z^0)), (x^0, y^0, z^0) \in \mathbb{R}^3$$

2)
$$F(x^0, y^0, z^0) = G(x^0, y^0, z^0) = 0$$

3) Якобиан

$$\frac{D(F,G)}{D(y,z)} = \begin{vmatrix} F'_y & F'_z \\ G'_y & G'_z \end{vmatrix} \neq 0$$

Тогда $\exists ! \, f,g: O(x^0) \to \mathbb{R}$ с условиями:

•
$$f(x^0) = y^0, g(x^0) = z^0$$

•
$$F(x, f(x), g(x)) = G(x, f(x), g(x)) = 0$$

•
$$f, g \in \mathcal{C}^1(O(x^0))$$

▶ без доказательства ◀