Олимпиада по уравнениям с частными производными 25 апреля 2024 года

1. Решите в классе обобщенных функций задачу Коши

$$u''' + 3u'' + u' - 5u = \delta''(x - 1) + \theta(x), \quad u|_{x < 0} = 0.$$

2. (Розанова) Найдите классическое (класса $C^1(\mathbb{R}^2) \cap C^2(\mathbb{R}^2 \setminus \{y=0\}))$ ограниченное решение задачи

$$u_{xx} = (\operatorname{sgn} y) u_{yy}, \quad u|_{y=0} = \sin^2 x,$$

в плоскости \mathbb{R}^2 и доказать его единственность.

Решение. В полуплоскости y < 0 нужно решать уравнение Лапласа $\Delta u = 0$. Так как $\sin^2 x = \frac{1}{2}(1-\sin 2x)$, решение ищем в виде $u_- = \frac{1}{2} + Y(y)\sin 2x$. Подстановка в уравнение дает $Y(t) = C_1 e^{2y} + C_2 e^{-2y}$. Из ограниченности следует $C_2 = 0$, из краевого условия $C_1 = -\frac{1}{2}$. Единственность вытекает из продолжения во всю плоскость и теоремы Лиувилля.

В полуплоскости y>0 нужно решать волновое уравнение $u_{xx}=u_{yy}$, для единственности нужно два начальных условия. Одно $u|_{y=0}=\sin^2 x$, другое $u_y|_{y=0}=(u_-)_y|_{y=0}=\sin 2x e^{2y}|_{y=0}=-\sin 2y$, из гладкости во всей плоскости. Находим u_+ по формуле Даламбера.

Ответ.

$$u(x,y) = u_{\pm}, \quad y > (<)0,$$

$$u_{+} = \frac{1}{2} - \frac{1}{4}(\sin 2(x+y) + \sin 2(x-y) - \cos 2(x+y) + \cos 2(x-y)), \quad u_{-} = \frac{1}{2}(1 - \sin 2xe^{2y}).$$

3. (Филиновский) Существует ли гармоническая функция $u \in L_1(R^2)$, такая, что ряд $\sum_{k=1}^{\infty} k^2 u(2^k, 2^k)$ расходится?

Доказательство. Так как ряд $\sum_{k=1}^{\infty} k^2 u(2^k, 2^k)$ расходится, то $\sum_{k=1}^{\infty} k^2 |u(2^k, 2^k)| = +\infty$. Тогда по теореме о среднем для некоторого $\delta > 0$ круги $B_{\delta k^2}((2^k, 2^k))$ для различных k не пересекаются и

$$\begin{split} &+ \infty = \sum_{k=1}^{\infty} k^2 |u(2^k, 2^k)| = \sum_{k=1}^{\infty} \frac{k^2}{\pi \delta^2 k^2} \Big| \int_{B_{\delta k^2}((2^k, 2^k))} u(x) dx \Big| \\ &\leqslant \frac{1}{\pi \delta^2} \sum_{k=1}^{\infty} \int_{B_{\delta k^2}((2^k, 2^k))} |u(x)| dx \leqslant \frac{1}{\pi \delta^2} \int_{R^2} |u(x)| dx \end{split}$$

и функция $u \notin L_1(R^2)$

4. (Романов) Рассмотрим в области $Q_T = \{(x,t): x \in \mathbb{R}, \ 0 < t < T\}$ задачу Коши

$$u_t = (x^2 + 1)((x^2 + 1)u_x)_x, \quad u|_{t=0} = \varphi(x).$$

Верно ли, что для любого ограниченного классического решения этой задачи выполнен принцип максимума

$$\sup_{(x,t)\in Q_T} u \leqslant \sup_{x\in\mathbb{R}} \varphi?$$

Решение.

Ограничимся случаем $\varphi = 0$.

Если принцип максимума выполнен, то исходная задача имеет ровно одно ограниченное решение $u \equiv 0$.

Сделаем замену переменных $\xi = \xi(x)$ такую, что

$$(x^2+1)\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi}.$$

Например, можно взять $\xi = \operatorname{arctg} x$.

В этом случае уравнение сводится к задаче

$$u_t = u_{\xi\xi}, \quad \xi \in (-\pi/2, \pi/2,), \ t > 0$$
 (1)

$$u|_{t=0} = 0. (1)$$

Данная задача недоопределена. Добавив граничные условия вида

$$u|_{\xi=-\pi/2} = t$$
, $u|_{\xi=\pi/2} = t$,

мы получим отличное от нуля ограниченное в $(-\pi/2, \pi/2,) \times (0, T)$ решение задачи (1a), (1б) – а значит, и отличное от нуля ограниченное в Q_T решение исходной задачи.

5. (Романов) Найдите все функции $u(\mathbf{x})$, гармонические на множестве $\Omega = \{\mathbf{x} \in \mathbb{R}^3: 0 < \|\mathbf{x}\| \leqslant 1\}$, равные нулю при $\|\mathbf{x}\| = 1$ и удовлетворяющие условию

$$\lim_{|\mathbf{x}| \to 0} |\mathbf{x}| \ u(\mathbf{x}) = 2024.$$

Решение. Обозначим $v = u - \frac{2024}{|\mathbf{x}|}$.

Функция v – гармоническая в области Ω , при этом

$$v(|\mathbf{x}|) = o(|\mathbf{x}|^{-1})$$
 при $\mathbf{x} \to 0$.

По теореме об устранимой особенности, v – гармоническая в единичном шаре.

На границе шара она тождественно равна константе -2024. Значит, $v \equiv -2024$.

Тогда
$$u = \frac{2024}{|\mathbf{x}|} - 2024.$$

6. (Романов) В секретной лаборатории колеблется струна из экспериментального материала, закрепленная на концах и имеющая длину π .

К струне подключена большая кнопка. При нажатии кнопки скорость распространения волн в струне мгновенно меняется, а именно увеличивается вдвое. Когда кнопку отпускают, скорость распространения волн принимает исходное значение.

Скорость и форма струны меняются непрерывно.

Пусть в начальный момент времени струна имела нулевую скорость, а её форма задавалась уравнением $u(x,0) = \sin^2 x$.

Возможно ли так подобрать моменты нажатия и отпускания кнопки, чтобы отклонение струны от положения равновесия в какой-то точке $(x,t) \in (0,\pi)^2$ превысила по модулю 2024?

Решение. Пусть кнопку нажимали в моменты времени $t_1, t_3, \ldots, t_{2n-1}$ и отпускали в моменты времени t_2, t_4, \ldots, t_{2n} .

На каждом интервале (t_i, t_{i+1}) струна описывается уравнением

$$u_{tt} = a^2 u_{xx},$$

где a = 1 или a = 2.

Решение представимо в виде ряда

$$u(x,t) = \sum b_k(t) \sin kx.$$

Если функция u ограничена величиной 2024, то при всех k и при всех $t \in (0,\pi)$

$$|b_k| \le \frac{(u,\sin kx)_{L_2(0,\pi)}}{\|\sin kx\|_{L_2(0,\pi)}^2} \le \frac{2024\pi}{\pi/2} = 4048.$$

Функции $b_k(t)$ и $b_k'(t)$ – непрерывные и удовлетворяют почти всюду (кроме точек $t=t_i$) уравнению

$$b_k'' = -a^2(t)k^2b_k$$

где a(t) – кусочно-постоянная функция со значениями $\{1;2\}$ и точками разрыва t_1,\ldots,t_n . На каждом интервале (t_i,t_{i+1}) выполнено равенство

$$|b_k'(t)|^2 + a^2k^2b_k^2(t) = const.$$

Будем увеличивать a в тот момент, когда $b_k(t) = 0$, а уменьшать, когда $b_k'(t) = 0$.

Тогда, с одной стороны, $4k^2b_k^2(t_{i+1}) = |b'_k(t_i)|^2$, а с другой стороны $|b'_k(t_{i+2})|^2 = k^2b_k^2(t_{i+1})$, откуда $b'_k(t_{i+2}) = 2b'_k(t_i)$, $b_k(t_{i+1}) = 2b_k(t_{i-1})$, i – нечетно.

Поскольку $b_k = A \sin k(t+\phi)$ на каждом промежутке гладкости, интервал не превосходит периода функции $\sin kt$ и является величиной порядка 1/k.

Таким образом, за время T функцию b_k можно увеличить в q^{Tk} раз, q>1. С другой стороны, из начальных условий $b_k(0)\sim k^{-p},\ p\in\mathbb{N}.$

Так как $q^{Tk}k^{-p}\to\infty$, то найдется такое большое k, для которого в результате некоторой последовательности нажатий b_k превзойдет 4048.

7. (Романов) Пусть $\Omega = (0,1)^2$. При каких значениях $A \in \mathbb{R}$ функционал

$$J(u) = \int_{\Omega} (u_x^2 + u_y^2) \, dx dy + A \int_{\Omega} u \, dx dy + \int_{\partial \Omega} x u \, dS$$

имеет минимум на пространстве $W_2^1(\Omega)$?

Решение.

Подставим $u = c \in \mathbb{R}$. Тогда

$$J(u) = \int_{\Omega} Acdxdy + \int_{\partial\Omega} xcdS = c(A + \int_{\partial\Omega} xdS).$$

Если $A \neq -\int_{\partial\Omega} x dS = -2$, то минимум не существует, так как J(u) принимает все возможные значения из \mathbb{R} .

В противном случае минимумом будет решение задачи

$$2\Delta u = -2, \quad \frac{\partial u}{\partial n}|_{\partial\Omega} = -x.$$

8. (Романов) Пусть обобщенная функция $\delta_{S_{1/2}}$ определена соотношением

$$(\delta_{S_{1/2}}, \varphi) = \int_{x^2 + y^2 = 1/4} \varphi(x, y) dS.$$

Существует ли обобщенное решение задачи

$$\Delta u = \delta_{S_{1/2}}$$
 b $\Omega = \{x^2 + y^2 < 1\}, \qquad u|_{x^2 + y^2 = 1} = 0?$

Если да, найдите его.

Решение. Поскольку любая функция из $W_2^1(\Omega)$ имеет интегрируемый след на окружности $x^2+y^2=1/4$ и

$$\int_{x^2+y^2=1/4} u^2 dS \leqslant C \|u\|_{W_2^1(\Omega)}^2,$$

то δ_{S_1} является линейным непрерывным функционалом на $\overset{\circ}{W}\,_{2}^{1}(\Omega)$. По известной теореме, соответствующая задача Дирихле для оператора Лапласа однозначно разрешима в $\overset{\circ}{W}\,_{2}^{1}(\Omega)$.

Так как задача инвариантна относительно поворотов, будем искать радиальносимметричное решение $u = U(\sqrt{x^2 + y^2})$.

При $x^2 + y^2 \neq 1/4$ функция u – гармоническая. Отсюда

$$U(r) = \begin{cases} A, \ r < 1/2 \\ B + D \ln r, \ r > 1/2. \end{cases}$$

Из граничных условий B=0. Осталось посчитать обобщенный лапласиан $U(\sqrt{x^2+y^2})$, чтобы подобрать A и D.

Пусть $\varphi \in \mathcal{D}(\Omega)$. Тогда, с учетом формулы Грина

$$\int_{\sqrt{x^2+y^2}=1/2} \varphi dS = (\Delta u, \varphi) = (u, \Delta \varphi) = \int_{\sqrt{x^2+y^2}<1/2} A\Delta \varphi dx + \int_{1/2<\sqrt{x^2+y^2}<1} A\Delta \varphi dx =$$

$$= \int_{\sqrt{x^2+y^2}=1/2} A\varphi_r dS - \int_{\sqrt{x^2+y^2}=1/2} D\ln r \varphi_r dS - \int_{\sqrt{x^2+y^2}=1/2} D\frac{\partial}{\partial r} \ln r \varphi dS.$$

Отсюда $D\frac{\partial}{\partial r} \ln r|_{r=1/2} = 1, A = D \ln 1/2$. То есть $D = 1/2, A = -\frac{\ln 2}{2}$.