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Pabouaa  npocpamma  oucyunaunel  «Mnocmpaunvlil  A3bIK»  papabomauna 6
coomeemcmeuu ¢ O6pazo6amenbHLIM CMAHOAPMOM BbICULE20 00PA308AHUS, CAMOCMOAMENbHO
ycmanagnugaemvim Mockosckum eocyoapcmeennvim yHugepcumemom umenu M.B. Jlomonocosa,
07151 NOO20MOBKU KAOPO8 BblCulell K8ATUDUKAYUU.

1. KpaTkasi anHHOTAIIMS:

Haszeanue oucuyunaunovt — «Hnocmpannwiit A3v1K».

Henp w3ydyeHuss AUCUMIUIMHBI — pa3BUTHE HaBBIKOB IMEpeBOJa U  aHajiIu3a
HEaJIaTUPOBAHHON HAyYHOW JMTEpaTypbl MO CHEIUAIBHOCTH HAa AHTIUHCKOM SI3BIKE IS
MCIIOJIb30BaHUs MOJTYYeHHON MH(OpMalMKU B COOCTBEHHBIX HAyYHBIX HCCIIEIOBAaHUSIX; Pa3BUTHE
HABBIKOB IMOATOTOBKH W MPEICTABICHHS HAYYHOTO JOKIAAa MO CIENUAThHOCTH Ha aHTJIMHCKOM
A3BIKE; pa3BUTHE HABBIKOB HAMMCAHUSA COOCTBEHHON HAyYHOM CTaThU HA aHTJIMHCKOM S3BIKE JJIs
MyOMKAIUU B MEKTYHAPOIHBIX HAYYHBIX M3IAHUSX.

2. YpoBeHb BbICHIEr0 00pa3soBaHMsA — TIIOArOTOBKAa HAYYHBIX W HAy4HO-
[IE1arOrMYECKUX KaJapOB B aCIUPAHTYPE.

3. HayuHble cneuMajabHOCTH, Ui KOTOPBIX peayin3yeTcsl JaHHas mporpamma — 1.1.1,
112,113, 114,115, 116, 1.1.7, 1.1.8, 1.1.9, 1.1.10, 1.2.2, 1.2.3, 2.3.5, 2.3.6. Odaactu
HAYKH. MaTeMaTHKa ¥ MEXaHHKa, KOMIILIOTepHbIE HaYyKh M HWH(popmaTuka, WHHOPMAIIMOHHBIE
TEXHOJIOTHH U TEIEKOMMYHHUKAIUH.

4. MecTO AUCHUILIUHBI B CTpyKType IIporpamMmbl acmupaHTypbI: IUCIUIUIMHA
«MHOCTpaHHBIH A3BIK» BXOAUT B 00pa30BaTEIbHYI0 KOMIOHEHTY U SBIISETCS 00s13aTENbHON IS
OCBOCHHMS HE MO3JHEEe BTOPOTO T0/1a 00yUCHHUS.

5. Oobem aucUMILUTHHBI «MHOCTPAHHBIH fA3BIK» COCTABISECT S5 3a4eTHBIX enmmul,
Bcero 180 akagemmuyeckux 4yacoB, u3 KoTopbix: 140 wacoB cocTaBiseT KOHTaKkTHas pabora
acmpaHTa ¢ npernojasareieM (B ToMm yucie 120 9acoB — MpaKTHYECKUE 3aHATHS CEMHUHAPCKOTO
TUMa, 2 Yaca — TPYNIOBBIE KOHCYJIbTAI[MU TEpell dK3aMeHOM, 18 YacoB — WHANBUAYaIbHBIE
KoHcynbTamuu), 10 dacoB — MepompuaTHs TEKYIIEro KOHTPOJsS YCIEBAEMOCTH U
IPOMEXyTOuHOU arTectanuy, 30 YacoB COCTaBISIET CaMOCTOATENbHas paboTa yuwalerocs,
HaIpaBJieHHAs Ha MOATOTOBKY K SK3aMeHY.

6. Bxoanble TpeOOBaHNs 1)1 OCBOEHUSI TN CUHUILIMHBI, MPeIBAPUTEIbHbIE YCJIOBHUS.

OOyuaromuiicsi, TPUCTYMAIINN K OCBOCHUIO AUCIHHUIUTHHBI «VITHOCTpaHHBIA S3BIK» IS
aCIMHUPAHTOB, JO/DKEH BJIAZCTh. 1) MHOCTPAHHBIM SI3BIKOM Ha YPOBHE HE HIDKe ypoBHs B2 mo
mKkajge ypoBHeW Bimanmenust s3pikamu CEFR;  2) tepmmHOnorueid mo crnenuamibHOCTH
«DyHIaMeHTaNbHAas MaTeMaThKa ¢ MEXaHWKa»; 3) HaBbIKAMH YTEHHUsA, TMepeBoja |
pedepupoBaHus HEaAaNTHPOBAHHBIX AYTEHTUYHBIX TEKCTOB IO CIEIUAIBHOCTH; 4) HaBBIKAMH
TOBOPEHHSI HAa 3HAKOMBIC TEMBbI, MMOCTPOCHHSI MOHOJOTHYECKOTO BBICKA3bIBAHUS, MOJITOTOBKU
HAy4yHOTo JOKJIaJa, y4dacTusi B Oecele M HAydyHOW MAMCKYCCHUHU; 5) HaBBIKOM ITOHUMaHUS
3By4Yalle ayrTeHTHYHOW aHTIMICKOI peun Ha ypoBHE He Hike B2.

Ha npenpinymux ypoBHSIX BBICHIETO OOpa30BaHMs JOJDKHBI OBITh OCBOEHBI 00IIUE
KYpCHI:

1. «MlHOCTpaHHBIH S36IK» (YPOBEHB BBICIIETO 00pa30BaHMsI — CIICI[HATUCT/ MArucTp).

2. «U/HOCTpaHHBIA $3BIK: METOJIMKA TMOJATOTOBKM HAYYHBIX JIOKJIQJOB W BEICHUS
JTUCKYyCCUi» (YPOBEHB BBICIIIETO 0OOpa30BaHMsI — CIICIIHAJINCT).

CorimacHO HOpMaTHBaM, YCTaHAaBIMBaeMbIM MUHHCTEpPCTBOM HAyKHM U BBICIIEro oOpasoBanus P®,
OO6pa3oBaTenbHOMY CTaHAAPTY BBICIIETO 0Opa30BaHUS, CaMOCTOSTENBHO ycTaHaBiamBaemMomy MIY mvenum M.B.
JlomoHOCOBA, I HOATOTOBKY KaAPOB BEICIICH KBaTH(PHUKAIINN.
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7. CoaepsxkaHue TUCHHUILUINHBI, CTPYKTYPHPOBAHHOE 110 TEMaM.

HaumenoBanue u Bcero B Tom uncie
KpaTKoe CoJepKaHue (4ace)
pa3aesioB U TeM KonraktHasi padota (padoTa BO B3aMMOJeCTBHH C CamocrosiTesbHas padoTa
THCIHUATLIAHBI, npenoaaBartesieM), 4achbl 00y4arouerocsi, 4acbl
¢dopma npome:xkyTOUHOM U3 HUX 13 HUX
aTTecTaluu 1o
MCHHILTHHE = o Yuebubie Bcero Bcero
= = SamiTh, IToaroroBka K
o 8 E a E HalpaBJICHHbBIC HA 3K3aMeHy
B g 0 g § g MpOBEJCHHUE
= Q o H = TEeKYIIEro
= 3 =& | S8 | §2 | «onpom
= = = s = oy = o yCIIEeBAEMOCTH,
% 5 % E E a E o) E MIPOMEKYTOUHON
o l= Mo BR| N & = = aTTecTalH
Paznen 1. Anenutickuii sizvix | 32 30 2 32
HAYYHO20 MeKCma no
CReYUaIbHOCHU.
Paznen 2. Iucomennuiii 26 10 6 16 10 10
nepesoo HAYYHO20 MEeKCma
1O CNeyuaIbHOCHU.
Pasnen 3. Anenutickuii s3vix | 32 30 2 32
HAy4H020 00K1a0a no
CReyuaIbHOCU.
Paznen 4. Iloocomoska 36 20 6 26 10 10
HAy4Ho20 00K1A0d no
CReYUaIbHOCHU.
Pasnen 5. Hanucanue 46 30 3 6 36 10 10




COOCMBEHHOU HAYYHOU
cmamoi no
CneyuanbHOCmu.

[Ipomesxyrounas 8 2 6 8
aTTECTAIUS: IK3AMEH

Hroro: 180 120 2 18 10 150 30

OOyuenue BceM (GopMaM YCTHOTO M MHUCbMEHHOTO OOILEHHS HA aHTJIMHCKOM SI3bIKE BEJIETCS KOMIUIEKCHO C Y4eTOM (DOHETHYECKHX, JIEKCHUECKUX U
IrpaMMaTUYeCKMX HOPM COBPEMEHHOI'O AaHIVIMHCKOTO s3blka. B KauecTBe y4yeOHBIX TEKCTOB HCHOJNb3YeTCsl AyTEHTUYHas MOHOrpaduueckas H
NepUOINYecKas JINTEpaTypa Mo LIMPOKOMY Mo uitio (pakynbTeTa v MO y3KOW CHEeNHUaTbHOCTH aCIUPaHTa.

8. O0pa3oBaresibHbIe TeXHOJOIMH. IIpakTHUeckne 3aHATHS CEMMHAPCKOTO THIA IPOBOAATCA C HCIOJB30BAHMEM HMHTEPAKTHUBHBIX CPEICTB U
IPENOIaraloT BBHIIOIHEHNE 33aHUN HCCIIeI0BATEIbCKOIO XapakTepa (MMOArOTOBKa HAyYHOTO JOKJIA/a, HaMMCaHNEe MAaTeMAaTUYeCKOM CTaThH), a TaKXKe
ydacTue acllMpaHTOB B HAYYHOM IUCKYCCHUH.

9. YueOHO-MeTOAUYECKHE MAaTepPUAJbI IJIsl CAMOCTOSTEIBHONH padoThl 1o nuctuminHe «MHOCTpaHHBIN A3BIK» pa3MELIeHbl Ha caiite Kadeapbl
AHTJIMHCKOTO SI3bIKa MEXaHWKO-MaTeMaTH4eckoro Qakynprera (B pasnenax «Acmupanty» u «bubmroreka»). Kpome Toro, B paMkax caMoCTOSTENBHOI
paboTbl oOyuaronmmMess Heooxoumo npoyects 300 cTpaHUIl HAYYHOW JIMTEPATYpPHI N0 CHEIHATbHOCTH, PEKOMEH/IOBAHHOW HaYYHBIM PYKOBOJHUTEIEM, a
TaKXe CAMOCTOSITEJIbHO MOATOTOBUTH PAJ MUCbMEHHBIX padOT MO MPOYUTAHHOMY, a MMEHHO: NHCbMEHHBIH IEPEBOJ OTPHIBKA W3 IPOYUTAHHOM
JUTEPATYPHI IO CHEIHATBHOCTH C aHTIIMHCKOTO s3bIKa Ha pycckuil (00bemMom 15 000 3HAKOB), ClIOBapb-MUHHUMYM TEPMHHOB M3y4aeMOl CIICIIHaIbHOCTH,
CJIOBapb OOILIEHAyYHBIX BBIPAKEHUI, — a TaKKe NOJArOTOBUTH TPU YCTHBIX JOKJIaJa IO HAYYHBIM ACHEKTaM, PaCCMOTPEHHBIM B PEKOMEHJOBAHHOU
auteparype. [TomrMo 3TOro, B paMKax caMOCTOSITETIbHOM paboThl aCHUPAHTHI TOTOBAT HAYYHBIN OKIJIAJ MO JUIJIOMHONW pabOTe HA aHTJIMHCKOM S3bIKE,
NUIIYT COOCTBEHHYIO HAYYHYIO CTAaThIO 110 CHELUAIBHOCTHU (Ha aHIVIMICKOM f3bIKE) M TOTOBST 110 HEM HayuHBIN JOKJIaJ (TakKe Ha aHIJIMHCKOM SI3bIKE) C
UCTIOJIb30BAHUEM COBPEMEHHBIX TEXHOJOTMH (KOMIIBIOTEpPHOH mpe3eHTanuu). Bcee BblmenepeuncieHHble pabOThl MPOXOIAT OOCYXKIEHHE CO
CHELMATMCTOM IO MaTeMaTHKe/ MEXaHUKE Ha 3K3aMEHE KaHAMJAaTCKOI0 MUHUMYMa 10 HHOCTPAHHOMY SI3BIKY.



10. PecypcHoe o0ecnieueHue:
e [lepeyeHb OCHOBHOM M JOMOJHUTEIHHON Y4eOHOH JINTEPATYpHI KO BCEMY KypCy.

OcHoBHas iuTeparypa:

1. Aunexcanapos I1.C. AHTIIO-pyCCKHUIA CTOBaph MaTeMaTHISCKUX TEPMHUHOB. — M.: Mup, 1994,

2. Apxanpesckas K.A. TTocobue 1t pa3BUTHs HABBIKOB MMCEMEHHOM peuyr HAyYHOTO XapaKTepa Ha aHTINICKOM si3bike. — M.: 3narenscTBo
MockoBckoro yausepcureTta, 1988.

3. Beironckas JI.H. Focus on Scientific English. — M.: M3narenscTBo MexaHHKO-MaTeMaTrueckoro (akynbrera MI'Y u LlenTpa mpuKiiaaHbx

nccaenosangui, 2004.

4. Bwronckas JI.H., I'puropseBa . A. AHTIIMIICKUH S3BIK U1 MeXaHUKOB B MateMatukoB. — M.: MAKC Ilpecc, 2014.

5. Kapmosa JI.C. [Ipaktudeckoe mocodue mo moAroToBKe HAyYHBIX JTOKJIAIOB MO0 MareMaTuKe Ha aHriuiickom si3bike/ A Practical Guide to
Giving a Talk on Mathematics / TTox pen. JI.H. Beironckoii. — M.: MAKC Ilpecc, 2019.

6. KopueeBa M.C., Ilepekansckas T.K. YuebHoe nmocobue mo pa3BUTHIO HABBIKOB aHHOTHPOBaHUsS U pedepupoBanus. — M.: UznatenbcTBo
MockoBckoro ynusepcurera, 1993.

7. Kopneera M.C., E.A. MapenkoBa, T.K. Ilepekannckas. Ilocobue mo pedepupoBaHHIO HaydHBIX TEeKCTOB. — M.: M3marenbcTBO
MockoBckoro ynusepcurera, 1983.

8. Jloarep A. Pyccko-aHrnuiickuii clioBapb MaTeMaTHYECKUX TEPMUHOB. — 2-¢ u3a. — 1990.

9. CaueHko A.A. Writing Maths. Quotations: yueOHO-METOIUIECKOe nocoodue. [DnexTponHsIii pecypc:
http://www.eng.math.msu.su/writing_math.pdf].

10. Cocunckmii A.b. Kak HanmicaTh MaTeMaTHYECKYIO CTAaThIO Mo-aHruicku. — M.: M3gatenscteo MK HMYVY, 1994,

JlonosHUTeILHAS JUTEpPaTypa:

1. Tlepekannckas T.K. An Introduction to Scientific Communication. — M.: U3naTenscTBO MeXaHUKO-MaTeMaTndeckoro (akynprera MI'Y u
LenTpa npuknanHbeix uccienoBanuii, 2002.
Brironckas JI.H., Kopaeesa M.C., Munnenu E.W. Henuunsie ¢popmel rinarosia B HaydHoMm tekcre. — M.: MAKC Ilpecc, 2013.

Chang, L. Handbook for Spoken Mathematics. Lawrence Livermore Laboratory, 1983.

Collins dictionary of Mathematics / ed. by E.J.Borowski, J.M.Borwein. 2 ed. 2007.

English for Academics. Cambridge University Press. Book I, 2014; Book 11, 2015.

Gilman, Leonard. Writing Mathematics Well. The Mathematical Association of America, 1987.

Gross D. Some Hints on Mathematical Style. [9nexTponnslit pecypc: http://www.eng.math.msu.su].
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http://www.eng.math.msu.su/writing_math.pdf
http://www.eng.math.msu.su/

8. Grussendorf M. English for Presentations. OUP, 2011.

9. Halmos P.R. How to Talk Mathematics. Notices of AMS, 21:3 155-158, 1974.

10. Higham, Nicholas J. Handbook of Writing for Mathematical Sciences. S&AM, 1961.

11. McCarthy Michael, O’Dell Felicity. Academic Vocabulary in Use. Cambridge University Press, 2008.

12. Oxford Learner’s Dictionary of Academic English. Oxford University Press, 2014.

13. Trzeciak, Jerzy. Writing Mathematical Papers in English. European Mathematical Society Publishing House, 1995.
14. Wallwork A. English for Presentations at International Conferences. Springer, 2010.

15. Wallwork A. English for Research: Usage, Style, and Grammar. Springer, 2013.

e [lepeuenp HHGOPMAIIMOHHBIX CIPABOYHBIX PECYPCOB, TOCTYMHBIX B ceTH VIHTEepHET:
http://www.oxfordlearnersdictionaries.com/
http://dictionary.cambridge.org/
http://www.pearsonlongman.com/dictionaries/
http://www.oxfordreference.com/view/10.1093/acref/9780199235940.001.0001/acref-9780199235940

e Ormucaunue MaTepI/IaHLHO-TeXHI/I‘IeCKOI\/'I 63.351. SausaTus MMpOBOAATCS C UCIIOJIB30BAHUCM ayINO- U BUACOTCXHUKH.
11. SI3bIk mpenogaBaHMs: PYCCKU, aHTJTUUCKUM.
12. IlpenoxaBaresin:

1) 3aBeayrommii kadeapoit, goreHrt, k.¢.H. JI. C. Kaprnosa: lyubov.karpova@math.msu.ru, +7(495) 939-39-28.
2) Houenr, noueHT, k.¢.H. O. B. Kopenkasi: olga.koretskaya@math.msu.ru, +7(495) 939-39-28.

3) Jouent, mouenT, K.¢.H. E. 1. Mungenu: elena.mindeli@math.msu.ru, +7(495) 939-39-28.

4) louenr, noueHT, k.¢.H. E. Y. Crapukosa: elena.starikova@math.msu.ru, +7(495) 939-39-28.

5) Houent, mouent, k.¢.H. JI. JI. Crenanss: lolitta.stepanyan@math.msu.ru, +7(495) 939-39-28.

6) Jlouent E. H. Eroposa: elena.egorova@math.msu.ru, +7(495) 939-39-28.

8) Crapmmii nmpenogasarenb A. A. CaBuenko: alexander.savchenko@math.msu.ru, +7(495) 939-39-28.

9) Crapumii npenogasareis JI. U. Illymuxuna: liudmila.shumikhina@math.msu.ru, +7(495) 939-39-28.
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DoHbI OLIEHOYHBIX CPEACTB HE0OX0AUMBbIE 1JIS OLEHKHU Pe3yJIbTATOB 00y4YeHUs
O0pa3ubl JOMANTHUX 3aaHUH

1. Ilepeseoume mexcm Ha pyccKuil A3vlK U PoeoUme €20 1eKCUKO-2PAMMAMUYECKUT AHAIU3.

ALGORITHMIC ADVANCEMENTS?

Many modern results on large numbers have depended on algorithms from seemingly unrelated fields. One example that could fairly be called the
workhorse of all engineering algorithms is the Fast Fourier Transform (FFT). The FFT is most often thought of as a means for ascertaining some
spectrum, as is done in analyzing birdsongs or human voices or in properly tuning an acoustic auditorium. It turns out that ordinary multiplication — a
fundamental operation between numbers — can be dramatically enhanced via FFT. Arnold Schoenage of the University of Bonn and others refined this
astute observation into a rigorous theory during the 1970s.

FFT multiplication has been used in celebrated calculations of = to a great many digits. Granted = is not a bona fide large number, but to compute = to
millions of digits involves the same kind of arithmetic used in large-number studies. In 1985 R. William Gosper, Jr., of Symbolics, Inc., in Palo Alto,
Calif., computed 17 million digits of . A year later David Bailey of the National Aeronautics and Space Administration Ames Research Center computed
7 to more than 29 million digits. More recently, Bailey and Gregory Chudnovsky of Columbia University reached one billion digits. And Yasumasa
Kanada of the University of Tokyo has reported five billion digits. In case anyone wants to check this at home, the one-billionth decimal place of =,
Kanada says, is nine.

FFT has also been used to find large prime numbers. Over the past decade or so, David Slowinski of Cray Research has made a veritable art of
discovering record primes. Slowinski and his coworker Paul Gage uncovered the prime 21,257,787 — 1 in mid-1996. A few months later, in November,
programmers Joel Armengaud of Paris and George F. Woltman of Orlando, Fla., working as part of a network project run by Woltman, found an even
larger prime: 21,398,269 — 1. This number, which has over 400,000 decimal digits, is the largest known prime number as of this writing. It is, like most
other record holders, a so-called Mersenne prime. These numbers take the form 2g-1, where g is an integer, and are named after the 17th century French
mathematician Marin Mersenne.

For this latest discovery, Woltman optimized an algorithm called an irrational-base discrete weighted transform, the theory of which I developed in
1991 with Barry Fagin of Dartmouth College and Joshua Doenias of NeXT Software in Redwood City, Calif. This method was actually a by-product of
cryptography research at NeXT.

Blaine Garst, Doug Mitchell, Avadis Tevanian, Jr., and | implemented at NeXT what is one of the strongest — if not the strongest — encryption
schemes available today, based on Mersenne primes. This patented scheme, termed Fast Elliptic Encryption (FEE), uses the algebra of elliptic curves, and
it is very fast. Using, for example, the newfound Armengaud-Woltman prime 21,398,269 — 1 as a basis, the FEE system could readily encrypt this issue of
Scientific American into seeming gibberish. Under current number-theoretical beliefs about the difficulty of cracking FEE codes, it would require,
without knowing the secret key, all the computing power on earth more than 1010,000 years to decrypt the gibberish back into a meaningful magazine.
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Just as with factoring problems, proving that a large number is prime is much more complicated if the number is arbitrary — that is, if it is not of some
special form, as are the Mersenne primes. For primes of certain special forms, large falls somewhere in the range of 1,000,000. But currently it takes
considerable computational effort to prove that a ‘random’ prime having only a few thousand digits is indeed prime. For example, in 1992 it took several
weeks for Francois Morian of the University of Claude Bernard, using techniques developed jointly with A.O.L. Atkin of the University of Illinois, and
others, to prove by computer that a particular 1,505-digit number, termed a partition number, is prime.

USING FAST FOURIER TRANSFORMS FOR SPEEDY MULTIPLICATION

Ordinary multiplication is a long-winded process by any account, even for relatively small numbers: To multiply two numbers, x and y, each having D
digits, the usual, grammars school method involves multiplying each successive digit of x by every digit of y and then adding columnwise, for a total of
roughly D? operations. During the 1970s, mathematicians developed means for hastening multiplication of two D-digit numbers by way of the Fast
Fourier Transform (FFT). The FFT reduces the number of operations down to the order of D log D. (For example, for two 1,000-digit numbers, the
grammar school method may take more than 1,000,000 operations, whereas an FFT might take only 50,000 operations.)

A full discussion of the FFT algorithm for multiplication is beyond the scope of this article. In brief, the digits of two numbers, x and y (actually, the
digits in some number base most convenient for the computing machinery) are thought of as signals. The FFT is applied to each signal in order to
decompose the signal into its spectral components. This is done in the same way that a biologist might decompose a whale song or some other meaningful
signal into frequency bands. These spectra are quickly multiplied together, frequency by frequency. Then an inverse FFT and some final manipulations
are performed to yield the digits of the product of x and y.

There are various, powerful modern enhancements to this basic FFT multiplication. One such enhancement is to treat the digit signals as bipolar, meaning
both positive and negative digits are allowed. Another is to weight the signals by first multiplying each one by some other special signal. These enhancements
have enabled mathematicians to discover new prime numbers and prove that certain numbers are prime or composite (not prime).

’Boironckas JI.H., T'puropbesa M.A. AHIIMICKHIT S3BIK UTSE MEXAaHNKOB 1 MaTeMaTikoB. M.: MAKC IIpecc, 2014; Scientific American. February, 1997, pp.
76 -77.



2. YnpasicneHus na 3aKpenieHue 00ULeHAYUHOU N1eKCUKU.

. Fill in the gaps.
From the following list use each word only once to complete the sentences below. Remember that you may need to change the form of nouns
and verbs:

Conceive (v) academic (adj) equilibrium (n) rational (adj) compute (v)
pendulum (n) series (n) section (n)  stable (adj) speculate (v)

Reports are usually divided into separate with headings such as “Findings’ and “‘Conclusions’.

In addition to the regular lectures, we have a of public lectures given by guest speakers from other universities.

The price of a product will not change if there is between the supply and the demand for that product.

After a very difficult night, his blood pressure became again and his family were allowed to visit him.

The Internet was first of as a way of linking computers in the USA together.

Although there is very little evidence, many scientists that life may exist on other planets.

Most economic theories assume that people act on a basis, but this doesn’t take account of the fact that we often use our emotions
instead.

Students at university are encouraged to play sports or join clubs in addition to following their studies.

We can make machines which can huge numbers of mathematical problems, but it is still too early to claim that machines
can actually think for themselves.

10. Periods of high economic growth tend to be followed by low growth, followed by higher growth again, like a

NogkrwdpE
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Il.  Choose the right word.

In each of the sentences below, decide which word is more suitable.

1. A new moon occurs/ takes place every 28 days.

2. Most universities need to earn money from private sources, but the important/ major part of their funding still comes from the government.
3. The main concentration/ focus of the paper is on the problems concerning air pollution.

4. Although it is not very big, the library has an excellent range/ variety of books, journals and other resources for study.

5. Itis now possible to infer/ imply a link between using mobile phones and contracting some forms of cancer.

1. Finish the sentences.
Choose the best ending for each of the sentence extracts below from the list underneath:
1. In 1905, Einstein published the first part of his theory...



2. Environmentalists point out that electric cars just shift ...

3. Most metals expand...

4. The new grading machine has the function...

5. In some universities, there is a café adjacent...

6. After studying for three hours, it becomes difficult to concentrate...
7. Inthe 17" century, Galileo demonstrated...

8. Fifty years ago, most smokers were not aware..

9. The letters L, E and C on the map correspond...

10. The negotiations went on through the night, but the eventual..

a. ...of the dangers of smoking.

b. ... outcome was agreement on all the main points.

c. ... of relativity, which completely changed our ideas of time and space.
d. ... onyour work, and so it’s a good idea to take a break.

e. ... when they are heated.

f. ... of separating the larger pieces of metal from the smaller pieces.

g. ...tothe library where students can take a break.

h. ... that all objects (heavy or light) fall at the same speed.

i. ... the pollution problem from the car itself to the electricity station.

J. ...to London, Edinburgh and Cardiff.

IV. Word substitution.
From the list below, choose one word which could be used in place of the words in italics without changing the meaning of the sentence.
Remember that you may need to change the form or in some cases the grammatical class of the word:

Emphasize (v) generate (v) pertinent (ad)) undergo (v) notion (n)

Lecturers often speak more loudly and more slowly when they want to stress an important point.

The new computer system created a lot of interest among potential customers.

One difficult aspect of writing an essay is selecting material which is relevant to the topic and excluding irrelevant information.

The compana/ has experienced a number of significant changes in the last two years.

Until the 16" century, the idea that the Earth moves around the Sun was ridiculous. Today we accept this concept as completely normal.

agrwdE
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V. Choose the best word.
For each of the sentences here, choose the best word from a, b or c:

1. After you have submitted your application, the university will attempt to that the information you have supplied is correct.
a. verify b. certify c. investigate
2. In some countries, there is no tax on books on the that education should not be taxed.
a. principle b. idea c. concept
3. Further information can be from the company’s office.
a. obtained b. found c. got
4. Good theories are important, of course, but we must have evidence to support them.
a.empirical b. true c. realistic
5. A simple everyday example of the is the standard postcard.
a. triangle b. square c. rectangle
6. According to the , the building should be ready for use by the end of the year.
a.timing b. schedule c. time
7. When you hit a drum, the movement of the drum causes the air molecules to , which we hear as sound.
a. reverberate b. vibrate c. shake
8. Although we now believe this to be impossible, early scientists tried to produce motion machines, that is, machines which
would never stop.
a. perpetual b. everlasting c. undying
9. The atmospheres of most planets are not , making it difficult for us to see the surface.
a. transparent b. lucid C. Clear
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10. In a nuclear power station, of uranium are split into smaller particles, releasing huge amounts of energy.
a. atoms b. chunks c. elements

Bonpocs! 1J1si MPOMEKYTOUHOI aTTecTanun (IK3aMeHa)

1. TIuceMeHHBIN MEpPeBOJ Ha PYCCKUU S3BIK (CO CIOBapéM) OPUTHHAIBLHOTO TEKCTa MO cHenuaibHOCTH 00béMoM 2500-3000 mevaTHBIX 3HAKOB U
nepeaaya u3BIeYEHHON HHPOPMALIUK Ha aHTIMICKOM si3bIke. BpeMst Ha moaArotoBky — 45-60 MUHYT.
2. YreHue BcIayX M YCTHBIHA mepeBon (6e3 cioBapst U 6e3 MOArOTOBKM) OPUTHHAIBHOTO TEKCTa Mo crenuaibHocTH 00béMoM 1000-1500 medaTHBIX

3HAKOB.
3. becena ¢ 3x3aMeHaTOpaMy Ha aHTIIMICKOM SI3BIKE 110 BOIIPOCAM CIEIHAILHOCTH U HAy4yHOU paboTe acrupaHTa.
4. YcrHOe pedeprpoBaHHUE HA aHTJIMICKOM SI3bIKE OPUTHHAIBHOTO TEKCTA U3 TIEPUOIMUECKON MeuaTH (Ta3eThl, )KypHaia).

Hpumepbl mMeKcma Ha RUCLMEHHDbLIL nepeeod Co cnoeapem

1. The Generalised Dirichlet Problem

Given feH%; to find a ueHo™? such that (9) holds. We know that a classical solution of the Dirichlet problem is a solution of the generalised Dirichlet
problem. Conversely, a solution u of the generalised problem which has continuous derivatives in G of order m is a classical solution of Lu=f; this follows
from (5) by integration by parts. Moreover, if it has continuous derivatives up to order m/2 in G and G is sufficiently smooth, we see that all derivatives of
order < m/2 - 1 vanish on G. Thus u is a classical solution of the Dirichlet problem. Thus we may solve the Dirichlet problem by first solving the
generalised Dirichlet problem and then showing that the solution has the required smoothness properties.

While the problem of differentiability on the boundary is in itself very interesting, one should nevertheless remember that the generalised way of
formulating boundary conditions is in many ways natural. Thus, it is well known that, even for Laplace’s equation, the Dirichlet problem may not have a
classical solution, that is, a solution which is continuous up to the boundary, for the most general domain. The Hilbert space formulation of the Dirichlet
problem, however, is applicable without any restrictions. In a certain sense, this formulation of the boundary condition does the thinking which would
otherwise have to be performed by the mathematician posing the problem. Consider, for instance, the Dirichlet problem for the Laplace equation 4u=0 in
3 dimensions. We assume that the boundary G consists of smooth manifolds of dimensions 2, 1, and 0 (surfaces, curves, points).

Having once established convergence of the solution of the difference scheme under rather generous regularity assumptions on the coefficients and
data, one can try to extend the convergence proof to less regular cases. It is easiest to relax the restrictions on the data. Indeed convergence must certainly
hold if the data w and f are assumed to be only uniformly bounded and uniformly continuous. For then we can find sequences of data f,, w, converging
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uniformly to f, respectively w, for n—o0 and such that all derivatives of an f, or w, for fixed n are bounded uniformly. (One such approximation to f would
be represented by the formula (5.1) with t=1/n.) If u,, v, are the solutions of differential and difference equations corresponding to f,, w, , we have from
(6.12 6.15) that the u, and v, form Cauchy sequences converging respectively two functions u, v. There exist for every ¢>0 an N such that
|u-uN |< &, [v-VN|< ¢ in some given t-interval. Moreover, we have from (6.13) that there exists a d(e, N(¢g)) such that |uN -vN |< ¢ for h<é.
Consequently, |u -v |< 3¢ for h<d(e, N(¢)), i.e. the solution v of the difference scheme corresponding to f, w converges towards the function u for
h—o0. Proof of convergence for discontinuous data requires more refined estimates which we shall not give here.
(from Lipman Bers, Fritz John, Martin Schechter. Partial Differential Equations. American Mathematical Society. P. 113-114)

2. Surface Wave Instability

Experiments with a thin liquid film flowing down an inclined plate under isothermal conditions have shown the development of “long” wavelength
deformations on its open (referred to as “free”) surface, i.e., deformations much longer than the film thickness. “Short” waves have not been observed in
experiments, at least not at smaller flow rates. These long waves seem to result from the instability of an initially uniform laminar flow. For a vertical
geometry (f =n/2) wavy motions appear as soon as the film flows down the plate.

There are three related mechanisms influencing this long-wave hydrodynamic instability. One is due to the presence of gravity, more precisely its
stream-wise component, which is a body force pushing the liquid to fall down to a minimum potential level. Another one is inertia, whose subtle role
along with that of viscosity we shall carefully elucidate later in this monograph. The third one is the cross-stream component of gravity leading to
hydrostatic pressure that tends to maintain equipotential levels and hence to prevent surface deformation. Needless to say, surface tension and, depending
on the circumstances, surface tension gradients and thermal diffusivity come into play. Let us now describe three mechanisms in general physical terms.

Consider a perturbation to the flat liquid film flow in which the free surface is deflected slightly upward over a lengthscale 1 that is much longer
than the depth 7y of the film. Because the height of the top surface varies slowly in the streamwise direction, the velocity distribution at each streamwise
location will remain close to that of a fully developed viscous film flow characterized to a good first approximation by a semiparabolic profile. Indeed, by
neglecting the hydrodynamic drag of the ambient gas atmosphere, the theory predicts that for low flow rates (low values of the Reynolds number), the
velocity profile in the liquid film is semiparabolic. It can also be shown that the net streamwise flow rate in the film is positive and that it increases with
the depth of the film. Thus, at the crests of the deflection the streamwise flow rate is at a maximum, and it is at the minimum at the troughs. The net result
is that gravity draws fluid toward the front face of a crest, deflecting it upward while at the same time it draws fluid from the rear face, deflecting it
downward. This first mechanism produces a wavy downstream motion of the perturbation without growth and at a phase speed higher than the velocity of
any fluid particle in the undisturbed film.

Now consider at a particular instance in time a streamwise location that is at the front face of a perturbation crest. Here, the surface height is
increasing because of the forward motion of the perturbation. The flow in the bulk of the film is accelerating in this position because it is attempting to
follow the fully developed viscous velocity profile dictated by the surface height increase. However, inertia effects prevent the flow from accelerating fast
enough to completely follow this velocity profile. The result is that the volume flux in the film is not as large as one due to a fully developed film flow.
At the rear face of the crest, the velocity is decreasing, but inertia effects similarly prevent the flow from decelerating too rapidly. Thus, the volume flux
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in the film is larger than that due to a fully developed film flow. The net effect of the two bulk fluxes results in an accumulation of fluid underneath the
perturbation crest and an increase in the interfacial displacement.
(from Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M. Falling Liquid Films. London: Springer, 2012. P. 2-4)

Hpumepbl meKcma Ha umenue u nepeeod oe3 cuoeapia

1. The aim of a numerical computation scheme is to obtain a sufficiently good approximation to the solution of a problem by a finite number of steps,
each of which can be carried out with sufficient accuracy by a person or a machine. Essentially the original continuous problem has to be approximated by
a discrete one in a finite-dimensional space, like the problem of solving a system of linear equations in a finite number of unknowns. Among the methods
used in this connection finite-difference schemes play a prominent part. Other methods such as that of Rayleigh-Ritz or expansions in orthogonal
functions may be preferable in special situations and may give much more accurate results with less computation. The advantage of the use of finite
differences lies in the extreme generality of the method; replacing the derivatives by difference quotients suggests itself as a natural approach in every
conceivable situation involving differential equations.

From the theoretical point of view application of an approximation method is only justified if an estimate for the resulting error (or at least for the
probable error) can be produced. Whether or not an error of one percent in the result is tolerable depends on the special purpose for which the result is
intended. Moreover, whether or not a sequence of 10,000 rational operations of a certain kind will result in a maximum error of one percent depends on
the special arrangement of the computation, the number of significant figures kept, and the type of machine used. If we want to keep error estimates free
of such special accidental features, we have to permit operations involving limits and potentially an arbitrary number of steps. Such estimates will be of
the form: for a given ¢>0 there are functions N(g) and d(g) such that a certain scheme carried to N steps, each performed with a maximum error ¢, will
result in a final error of size at most e.

(from Lipman Bers, Fritz John, Martin Schechter. Partial Differential Equations. American Mathematical Society. P. 108-109)

2. Noteworthy is that the intuitively appealing approach followed by Kapitza - that of determining the flow characteristics from a thermodynamic
criterion in which energy dissipation due to viscosity is in balance with gravitational work - is naive and not sufficient in the case of a falling liquid film.
Surely, the uniform laminar flow (half-Poiseuille flow) can be obtained from such a thermodynamic criterion. In general, the balance between viscous
dissipation and energy supply leads to a family of steady solutions. The solution that actually occurs can then be determined by the minimization of the
"viscous dissipation function™ for given boundary conditions. But the uniform flow obtained from this minimization process in the case of a film on a
plate is only observable for horizontal and inclined layers (f#z/2) and not when the plate is vertical (f=n/2). The point was the crux of the
misunderstanding made by Kapitza: he thought of the wavy film dynamics as some kind of "equilibrium state” whose energy dissipation could be defined
as a function of "state variables".
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But a sinusoidal perturbation to the flat film is a nonequilibrium state. In fact, for vertical layers, Benjamin showed unequivocally that the previous
result by Kapitsa on the instability threshold was an error, when, in view of the apparent absence of waves on very "thin films," he concluded that, for the
flow down a vertical plane, there exists a critical flow rate (or a critical Reynolds number) calculated from the above thermodynamic criterion, below
which the uniform laminar flow is entirely stable. Benjamin studied the stability of the uniform laminar flow for an arbitrary inclination angle f#z/2 and
showed that although there is a range of low flow rates for which such base flow could be observed, this is not possible when the plate is vertical (5=x/2),
in which case the flow is unstable for all flow rates so that a critical flow rate (or equivalently a critical Reynolds number) in the usual sense does not
exist. In other words, for all finite values of the Reynolds number there is a class of sinusoidal perturbations which undergo unbounded amplification
according to the linear theory.

(from Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M. Falling Liquid Films. London: Springer, 2012. P. 5-6)

Ilpumep mexkcma u3 nepuoouuecKkoil neuamu Ha ycmHoe pegepuposanue
Sugaring the decision

Do not think on an empty stomach

MOST people have experienced the feeling, after a taxing mental work-out, that they cannot be bothered to make any more decisions. If they are forced
to, they may do so intuitively, rather than by reasoning. Such apathy is often put down to tiredness, but a study published recently in Psychological
Science suggests there may be more to it than that. Whether reason or intuition is used may depend simply on the decision-maker’s blood-sugar level—
which is, itself, affected by the process of reasoning.

E.J. Masicampo and Roy Baumeister of Florida State University discovered this by doing some experiments on that most popular of laboratory
animals, the impoverished undergraduate. They asked 121 psychology students who had volunteered for the experiment to watch a silent video of a
woman being interviewed that had random words appearing in bold black letters every ten seconds along the perimeter of the video. This was the part of
the experiment intended to be mentally taxing. Half of the students were told to focus on the woman, to try to understand what she was saying, and to
ignore the words along the perimeter. The other half were given no instructions. Those that had to focus were exerting considerable self-control not to
look at the random words.

When the video was over, half of each group was given a glass of lemonade with sugar in it and half was given a glass of lemonade with sugar
substitute. Twelve minutes later, when the glucose from the lemonade with sugar in it had had time to enter the students’ blood, the researchers
administered a decision-making task that was designed to determine if the participant was using intuition or reason to make up his mind.

The students were asked to think about where they wanted to live in the coming year and given three accommodation options that varied both in
size and distance from the university campus. Two of the options were good, but in different ways: one was far from the campus, but very large; the other
was close to campus, but smaller. The third option was a decoy, similar to one of the good options, but obviously not quite as good. If it was close to
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campus and small, it was not quite as close as the good close option and slightly smaller. If it was far from campus and large, it was slightly smaller than
the good large option and slightly farther away.

A drink to decide
Psychologists have known for a long time that having a decoy option in a decision-making task draws people to choose a reasonable option that is similar
to the decoy. Dr Masicampo and Dr Baumeister suspected that students who had been asked to work hard during the video and then been given a drink
without any sugar in it would be more likely to rely on intuition when making this decision than those from the other three groups. And that is what
happened; 64% of them were swayed by the decoy. Those who had either not had to exert mental energy during the showing of the video or had been
given glucose in their lemonade, used reason in their decision-making task and were less likely to be swayed by the decoy.

It is not clear why intuition is independent of glucose. It could be that humans inherited a default nervous system from other mammals that was
similar to intuition, and that could make snap decisions about whether to fight or flee regardless of how much glucose was in the body.

Whatever the reason, the upshot seems to be that thinking is, indeed, hard work. And important decisions should not be made on an empty
stomach.

(The Economist, March 2008)

MeTtoauyeckue MaTepuasbl 1J1s1 IPOBeAeHHUS NMPOLEYP OLCHUBAHNUS Pe3y/IbTATOB 00y4eHHA

DK3aMeH MPOBOJUTCS MO OujeraM, BKIIOYAIOMIMM TPU BOIpPOCa. YPOBEHb 3HAHUN aclupaHTa OLIEHMBAETCA MO KaXKIOMY BOIIPOCY Ha «OTIUYHOY,
«XOpOIIO», «YIOBJIECTBOPUTEIILHO», «HEYIOBIETBOPUTENBHO». B cilyyae ecnm Ha Bce BONpPOCHl OBbLI JaH OTBET, OLEHEHHBIM HE HUXe, 4YeM
«YAOBJIETBOPUTEIBHOY», ACHUPAHT MOy4aeT OOIIYIO MOJIOKUTEIbHYIO OIICHKY.

IIkana oueHMBaHWs 3HAHUN, YMEHHd 1 HABBIKOB

PE3YJIBTAT KPUTEPUU OHEHUBAHUA PE3YJIBTATA OBYYEHUA IMPOLEAYPbI
OBYUYEHUA N0 JUCHUIINHE (MOAYJII0) U OLHEHUBAHUA*
no IIKAJIA ouennBaHus
TUCHUILINHE
(MoyJ110)
1 2 3 4 5
31( y[<.4) OtcyrcrBue 3HaHui | dparmeHTapHeie Henonnsle 3Hanus CdopmupoBaHHbIE, HO CdopmupoBaHHbIE U TectupoBanue

3HAHUS METOJOB U METOJIOB M TEXHOJIOTHH | coepiKaliye OTACIbHbIE | CUCTEMaTHUECKUE OKx3aMeH
TEXHOJIOTHI HAy4YHOH | Hay4yHOH npoOesbl 3HaHUS 3HAHMS METOJIOB U
KOMMYHUKAIINU Ha KOMMYHUKAIINU Ha METOJIOB ¥ TEXHOJIOTHH TEXHOJIOTUH Hay9IHOH
TOCYAapCTBEHHOM H TOCYAapCTBEHHOM H HAyYHOH KOMMYHHMKAIIMM | KOMMYHHKALUH Ha
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HWHOCTPAHHOM fA3bIKax

HWHOCTPAHHOM fA3bIKax

Ha rocy1apCTBECHHOM U
WHOCTPAHHOM S3bIKax

TOCYAApCTBEHHOM U
WHOCTPaHHOM SI3BIKax

32¢( y[{.4) OtcyrcrBue 3HaHui | dparmeHTapHsie Henonnsle 3Hanus CdopmupoBaHHbIE, HO CdopmupoBaHHbIE TectupoBanue
3HAHUS CTUJIUCTUYECKUX COJIepKallie OTJCNIbHBIE | CUCTEMAaTUYECKUe OKx3aMeH
CTHJIUCTUIECKUX 0COOEHHOCTEH POOEITbI 3HAHMS 3HAHUS
0COOCHHOCTEH HpeACTABICHUS OCHOBHBIX CTHIINCTHIECKUX
HpPECTaBICHUS pe3ysIbTaTOB HAYIHON CTHIIMCTHIECKUX 0COOCHHOCTEH
pe3yIbTaTOB HAYYHOH | IEATENBFHOCTH B YCTHOW | oCcOOCHHOCTEH [IpeICTaBICHUS
JEeATEIIBHOCTH B ¥ MICBMEHHOH (opme HpECTaBICHUS pe3yJIbTaTOB HAYIHON
YCTHOH 1 MIMCHbMEHHOH | Ha TOCYAapCTBEHHOM M | PE3YJIbTaTOB HAYYHOH JEeATEIIBHOCTH B
¢dopme Ha MHOCTPAHHOM SI3BIKaX JIeSITEIbHOCTU B YCTHOM | YCTHOHM M MHUCbMEHHOU
rOCyJIapCTBEHHOM U Y MMCbMEHHOM (opme Ha | dopme Ha
MHOCTPAHHOM SI3BIKax roCy/IapCTBEHHOM U roCy/IapCTBEHHOM U
UHOCTPAaHHOM SI3BIKax MHOCTPAaHHOM SI3bIKax
Vi (VK -4) OtcyrcrBue ymenuit | Hactuuno ocBoeHHoe | B menom ycnemHoe, Ho | B nenom ycnemrnoe, Ho VYcneurHoe u TectupoBanue
yYMEHUE CIIe10BaTh HE CUCTEMaTUYECKOe coJiepKallee OTACNIbHBIE | CUCTEMaTUUECKOe OKx3aMeH
OCHOBHBIM HOpMaM, YMEHHE CIIe/I0BATh npoOesl yMEHUE yYMEHHE CIIe/I0BATh
HPUHATHIM B HAY9HOM | OCHOBHBIM HOpMaM, CJIEI0BATH OCHOBHBIM OCHOBHBIM HOpMaM,
0O0IIEeHNH Ha HNPUHATHIM B HAY9HOM HOpMaM, IPUHATHIM B HNPUHATHIM B HAY9HOM
TOCyIapCTBEHHOM H oOrIeHun Ha HayYHOM OOIICHUH Ha oOrmIeHun Ha
WHOCTPAaHHOM f3bIKaX | TOCYIapCTBEHHOM U TOCYAapCTBEHHOM H TOCYAapCTBEHHOM H
MHOCTPAaHHOM SI3bIKaX MHOCTPAaHHOM SI3bIKaX MHOCTPAaHHOM SI3bIKaX
BI (Vi ]{-4) OrcyTcTBHE ®parmeHTapHoe B nenom ycnemwnoe, Ho | B nenom ycnemsoe, Ho Ycnemnoe u TectupoBanue
HaBBIKOB MPUMEHEHUE HABBIKOB | HE CUCTEMaTUYECKOE COIIPOBOXKIAIOLIEECS CHUCTEMaTHUYECKOe OKx3aMeH
aHaJIM3a Hay4YHbIX NpUMEHEHNE HaBBIKOB OT/AEJIbHBIMHU OIIMOKaMH | IPUMEHEHUE HaBBIKOB
TEKCTOB Ha aHaJIM3a Hay4YHbIX NPUMEHEHNE HaBBIKOB aHaJIM3a Hay4YHbIX
roCyJapCTBEHHOM U TEKCTOB Ha aHaJIM3a Hay4YHbIX TEKCTOB Ha
UHOCTPAHHOM SI3BIKaX | FOCYJapCTBEHHOM U TEKCTOB Ha roCyJapCTBEHHOM U
MHOCTPAHHOM SI3BIKax TOCyJIapCTBEHHOM U UHOCTPAHHOM SI3BIKax
MHOCTPAaHHOM SI3bIKaX
B2 (Vi ]{-4) OrcyTcTBHE ®parmeHTapHoe B nenom ycnewmnoe, Ho | B nenom ycnemsoe, Ho Ycnemnoe u TectupoBanue
HaBBIKOB NPUMEHEHNE HAaBBIKOB | HE CHCTEMAaTH4IECKOE COIPOBOXKIAOIIEECS CHCTEMaTHYECKOE OKk3ameH

KPUTUYECKOU OIEHKH
3 dexTuBHOCTH
Pa3IMIHBIX METOJIOB H
TEXHOJIOTUH Hay4yHOH
KOMMYHUKAIIUU Ha
TOCyJJapCTBEHHOM U
MHOCTPAaHHOM SI3bIKax

pYMEHEeHNE HABBIKOB
KPUTUYECKOU OIEHKH
3 dexTuBHOCTH
Pa3IHYHBIX METOJOB U
TEXHOJIOTHI HAyYHOH
KOMMYHHUKAIIMA Ha
TOCYAAPCTBEHHOM U

OTJENFHBIMH OIINOKAMH
pUMEHEeHNE HABBIKOB
KPUTHYECKOU OIEHKH

3¢ heKTHBHOCTH
pa3UYHBIX METO/IOB U
TEXHOJIOTHIl HayYHOH
KOMMYHHUKAIIUU HA

pYMEHEeHNE HABBIKOB
KPUTUYECKOU OIEHKH
b dexTuBHOCTH
Pa3IMYHBIX METOJOB U
TEXHOJIOTHI HAyYHOH
KOMMYHHUKAIIMA Ha
TOCYAApCTBEHHOM U
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HWHOCTPAHHOM fA3bIKax

roCyJapCTBEHHOM U
UHOCTPAaHHOM SI3BIKax

HWHOCTPAHHOM fA3bIKax

B3 (VK-4)

OrcyTtcTBHE
HABBIKOB

®parMeHTapHOE
MpUMEHEHHE
Pa3ITUYHBIX METOJIOB,
TEXHOJIOTUH ¥ TUIIOB
KOMMYHMKaIUi pu
OCYILECTBIICHUH
npodeccHoHaIbHOM
JIeITEILHOCTH Ha
TOCYAApCTBEHHOM U
WHOCTPaHHOM SI3BIKax

B nenom ycnemnrnoe, HO
HE CUCTEMAaTUUECKOe
NpUMEHEHNE
pa3ITMYHBIX METOOB,
TEXHOJIOTUI U TUIIOB
KOMMYHMKaIUi npu
OCYIIECTBICHHN
mpoeccHoHaTBHON
JIeSITeIbHOCTH Ha
TOCyJJapCTBEHHOM U
UHOCTPAaHHOM SI3BIKaX

B nenom ycnemnrnoe, HO
COIIPOBOXKIAIOLIEECS
OTAEITBHBIMH OIIHOKaMHU
NPUMEHEHUE PA3ITHIHbBIX
METOJIOB, TEXHOJIOTHH 1
THIIOB KOMMYHHUKAIAH
IPH OCYIIECTBICHUN
poeccHoHaTBHON
JIeSITeIbHOCTH Ha
roCyJapCTBEHHOM U
UHOCTPAaHHOM SI3BIKax

VYcneurHoe u
CHUCTEMaTHUYECKOe
pUMEHEHNE
pa3IMYHBIX METOOB,
TEXHOJIOTHI U TUIIOB
KOMMYHMKaIUi npu
OCYIIECTBICHUN
poeccCHoHaTBFHON
JIeSITeIbHOCTH Ha
rOCyJapCTBEHHOM U
MHOCTPAaHHOM SI3bIKax

TectupoBanue
OKx3aMeH
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