Олимпиада кафедры Математических и компьютерных методов анализа

2016 год

- 1. Два абсолютно упругих одинаковых обруча требуется с помощью нерастяжимых нитей связать так чтобы получилась жесткая фигура, в которой обручи не касаются друг друга. (Толщиной обручей и нитей пренебречь. Трение абсолютное)
- 2. Для изготовления трубы радиуса r сварщики воспользовались полосой жести шириной $2\pi r$. В самом начале сварки дрогнули руки и стороны шва сдвинулись друг относительно друга на величину Δ . Каким получился радиус трубы?
- 3. Бильярдные шары числом 84 уложены на горизонтальном столе в правильную треугольную пирамиду с семью шарами вдоль ребра. На каждом шаре написано число, сумма любых четырех из которых, относящихся к шарам при вершинах пирамиды и ее правильных подпирамид, равна нулю. Правильной подпирамидой считается верхний шар вместе с несколькими подряд идущими слоями под ним, а также подпирамиды, получающиеся из таких всевозможных параллельными переносами. Какие числа написаны на шарах, если на одном из них написана единица?
- 4. Числа Фибоначчи $F_n, n \in \mathbb{Z}$, определяются правилом: $F_{n+1} = F_n + F_{n-1}, n \in \mathbb{Z}, F_0 = 0, F_1 = 1$. Для каких значений параметра $i \in \mathbb{Z}$ уравнение в целых числах $F_{x+i} = x$ имеет ровно два решения?
 - 5. Решить в целых числах уравнение $3^n = 2^m + 1$
- 6. В загоне круглой формы радиуса R ковбой хочет заарканить коня веревкой длины l. Максимальная скорость коня V. Требуется определить значение максимальной скорости v_0 для ковбоя такое, что: при $v>v_0$ имеется возможность заарканить коня; при $v< v_0$ у коня есть возможность оставаться свободным.
- 7. Двое школьников выясняют, кому из них дежурить. В их распоряжении имеется монета, у которой, к сожалению, орел выпадает реже решки, но, к счастью, иногда он все же выпадает. Как им добиться справедливость, исключив взаимные претензии?
- 8. Трое школьников выясняют, кому из них дежурить. В их распоряжении имеется монета, у которой орел и решка выпадают одинаково часто. Как им добиться справедливости, исключив взаимные претензии?

- 9. Трое школьников выясняют, кому из них дежурить. В их распоряжении имеется монета, у которой, к сожалению, орел выпадает реже решки, но, к счастью, иногда он все же выпадает. Как им добиться справедливости, исключив взаимные претензии?
- 10. Четверо учредителей фирмы после выходных обнаружили разбитую фару их автомобиля. Если это сделал посторонний, то нужен забор на сумму S, если же кто-то один из них в выходные, то ремонт фары на сумму $s \ll S$. Виновник не сознается, так как $s > \frac{S}{4}$ и это чревато увольнением за нарушение договора. Как им узнать, разбил посторонний или кто-то из них, причем в последнем случае каждый из трех других учредителей не узнает виновника. (Сговор исключен. Каждый в отдельности заинтересован в правильности решения.) Никаких подручных вычислительных средств нет. Все должно решаться на заасфальтированной площадке 20 м \times 20 м.
- 11. Рассматриваются все бесконечные последовательности из 0 и 1. В каждой последовательности выделен конечный отрезок из первых подряд идущих знаков, при этом никакой отрезок не может быть началом более длинного отрезка, выделенного в другой последовательности. Отрезки одинаковой длины, выделенные в разных последовательностях могут совпадать. Доказать, что длины отрезков ограничены.
- 12. Для рисования на большой прямоугольной доске используется мел с квадратным сечением со стороной 1 см. При движении мела стороны сечения всегда параллельны краям доски. Как начертить выпуклый многоульник площадью 1 $\rm m^2$ с наименьшей площадью границы (площадь границы не входит в полезную площадь многоугольника)?

13. Прочитать

Т	c	В	О	Л	О	K	p
o	\mathbf{g}	В	Ħ	Ь	Ħ	В	И
И	\vdash	X	Э	Y	П	O	Z:
F	\mathbf{T}	Э	Η	Z	И	d	П
м	П	е	0	ಭ	O	й	И
0	К	\mathbf{a}	H	\mathbf{H}	H	\mathbf{a}	\mathbf{T}
Т	И	T	$_{8}$	И	К	Л	Ъ
ಡ	М	ə	M	М	ပ	Н	R

- 14. В углах квадрата со стороной 269 мм расположены прямоугольники со сторонами 100 мм и 90 мм. Можно ли перемещением прямоугольников внутри квадрата без пересечения друг с другом поменять место расположения каждого прямоугольника на симметричное относительно центра квадрата?
- 15. Формулировка некоторого геометрического утверждения была вписана в клетки таблицы 10×10 построчно слева направо, начиная с верхней левой клетки. Знак переноса на следующую строку не ставился, но между соседними словами одной строки помещалась пустая клетка. Криптоша решил переставлять буквы в отдельных взятых наугад столбцах, сдвигая их все на одну позицию вверх и перенося самую верхнюю букву вниз (при этом пустую клетку он также считал буквой). Иногда он менял местами

сразу все строки, симметричные относительно средней линии, а именно 1-ю с 10-й, 2-ю с 9-й и т.д., после чего снова брался за передвижение букв в столбцах, взятых наугад. В результате таблица приняла представленный на рисунке вид. Прочитайте исходное геометрическое утверждение.

a	Л	П	Н	В	И		В	Т	р
e	O	\mathbf{c}	\mathbf{H}	Л	Я		O	Л	т
п		Я	Л	Ы	e	O	Ы	\mathbf{T}	у
e	O	\mathbf{a}	O	Щ	Д	p	p	\mathbf{a}	e
н	p	У	И		O	\mathbf{H}	\mathbf{c}	\mathbf{T}	В
п	K	И	\mathbf{M}	e	Ь		p		
e	В	O	Ю	\mathbf{T}	X	X	\mathbf{H}	\mathbf{a}	c
Д	\mathbf{c}	\mathbf{e}	X	И	И	\mathbf{e}	O	Я	
О	K	Ь	\mathbf{T}	Ы	П	Ь	П	\mathbf{e}	н
c	Ж	$^{\mathrm{c}}$	c	e	Л		О	О	О

16. Имеется клетчатая бумага неограниченных размеров со стороной клетки, равной 1. Шаблоном размера k называется всякая плоская фигура, составленная путем соединения концами друг с другом k параллельных или перпендикулярных отрезков длины 1. В точке соединенися могут сходиться два, три и четыре отрезка. Внутренние точки отрезков и точки соединения параллельных отрезков называются внутренними точками шаблона. Требуется найти все шаблоны, которыми можно покрыть все линии клетчатой бумаги (шаблоны можно поворачивать и переворачивать). При покрытии разрешается использовать шаблоны одного вида, причем никакие два шаблона не могут иметь общих внутренних точек. а) k=2; б) k=3.