История математики **5** лекция

Лекторы – С.С. Демидов М.А. Подколзина

Весенний семестр 2025 года

Математика Древней Греции.

Пифагорейцы.
Открытие несоизмеримости.
Геометрическая алгебра.
Знаменитые задачи древности.

Греческая нумерация

$$\Gamma^{\Delta} = 50$$
 $\Gamma^{X} = 5000$
 $H\Delta\Delta\PiIII = 128$
 $MM\Pi_{X}\Delta\Delta\Delta\Delta = ?$

Алфавитная греческая нумерация

Α, α΄,	1.	Ι, ι,	10.	Ρ, ρ',	100.
Β, β',	2.	Κ, κ΄,	20.	Σ, σ΄,	200.
Γ, γ΄,	3.	Λ, λ΄,	30.	Τ, τ΄,	300.
Δ , δ ,	4.	$M, \mu',$	40.	Υ, υ,	400.
Ε, ε΄,	5.	Ν, ν,	50.	Φ , ϕ' ,	500.
r',	6.	Ξ, ξ',	60.	Χ, χ΄,	600.
Z, ζ',	7.	Ο, ο΄,	70.	Ψ , ψ ,	700.
H, η'	8.	Π , π' ,	80.	$\Omega, \omega',$	800.
θ, β,	9.	9, 4',	90.	M',	900.

Математика:

арифметика геометрия астрономия музыка

Арифметика среди прочих наук выделяется совершенством знания.

Архит

Золотая пропорция

Для величин А и В справедливо отношение

$$A: H = R: B$$
 где $R = \frac{A+B}{2}$ - среднее арифметическое, $H = \frac{2AB}{A+B}$ - среднее гармоническое.

Учение о гармонии

1:2 октава

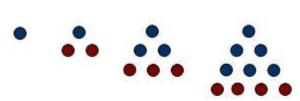
2:3 кварта

3:4 квинта

монохорд

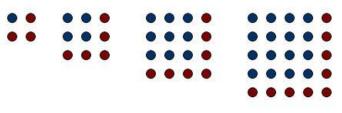
Фигурные числа

Треугольные числа
$$1+2+3+...+n=\frac{1}{2}n(n+1)$$
 • ...



Квадратные числа

$$1 + 3 + 5 + \dots(2n - 1) = n^2$$



Прямоугольные числа 2+4+6+...+2n=n(n+1)

Пятиугольные числа

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{1}{2}n(5n - 1)$$

Признаки делимости

```
p — простое число — линейное; p_1 \cdot p_2 - плоское число; p_1 \cdot p_2 \cdot p_3 - телесное число;
```

Дружественные числа

Дружественные числа – это такие, каждое из которых равно сумме делителей другого.

Например, 284 и 220.

17296 и 18416 (Ферма)

Совершенные числа

Совершенное число – это число, у которого сумма его делителей равна ему самому.

$$6 = 1 + 2 + 3$$

28, 496, 8128 (Никомах)

Если сумма $1 + 2 + ... + 2^n = p$ – простое число,

то $2^n p$ – совершенное число.

Эйлер: других четных совершенных чисел не существует.

Нечетные совершенные числа - ?

Учение о чете и нечете

10 пар противоположностей:

предел беспредельное

покой движение

нечет чет

прямое кривое

единое множество

свет тьма

правое левое

хорошее дурное

мужское женское

квадрат параллелограмм

Чет-нечет

Основные результаты:

Произведение делится на два тогда и только тогда, когда хотя бы один из сомножителей делится на два.

Всякое четное число представляется в виде $N=2^k\cdot N_1$

Классы эквивалентности (А,В)

Две пары чисел (A,B) и (C,D) пропорциональны, если у A и B существует общий делитель F, а у C и D общий делитель G такие, что

$$A = mF$$
 $C = mG$

$$B = nF$$
 $D = nG$

Пифагорейцы знали, что отношение пропорциональности транзитивно.

Пусть (A_0, B_0) - наименьшая пара.

Доказано:

1. Если $A: B = A_0: B_0$, то $A = kA_0$, $B = kB_0$.

2. Если A_0 , B_0 взаимно просты, то это наименьшая пара из всех, имеющих с ней одинаковое отношение.

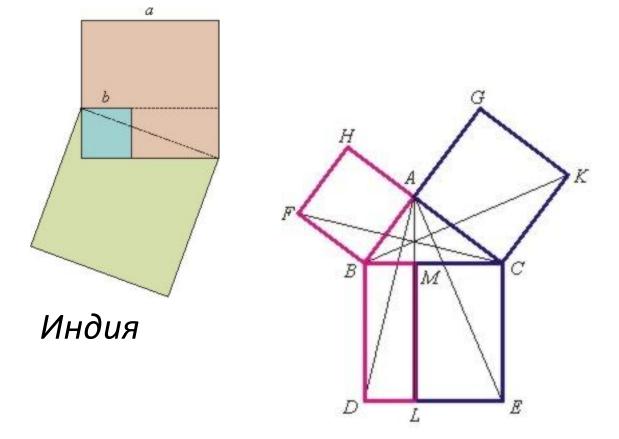
3. Если A_0 , B_0 составляют наименьшую пару, то они взаимно просты.

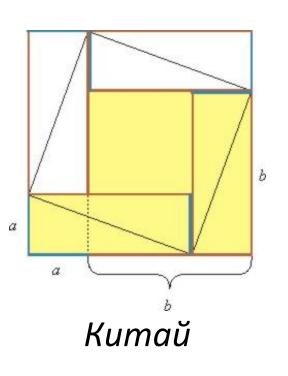
4. Если A:B=F:G и B:C=G:H, то A:C=F:H (закон композиции)

5.
$$(A_1A_2: B_1B_2) = (A_1: B_1) \otimes (A_2: B_2)$$

6. Чтобы составить отношения (A:B) и (C:D), надо найти наименьшие числа F,G,H такие, что A:B=F:G и C:D=G:H. Тогда $(A:B)\otimes (C:D)=(F:G)\otimes (G:H)=(F:H)$

Теорема Пифагора





Евклид «Начала»

Открытие несоизмеримости

Пусть
$$\sqrt{2} = \frac{m}{n}$$
, причем $(m,n) = 1$ $\sqrt{2}$ $2n^2 = m^2$

 m^2 - четное $\Rightarrow m=2k$ – тоже четное

При этом n нечетное, иначе $(m,n) \neq 1$

$$2n^2 = (2k)^2 = 4k^2$$

 $n^2 = 2k^2$ четное $\Rightarrow n$ четное.

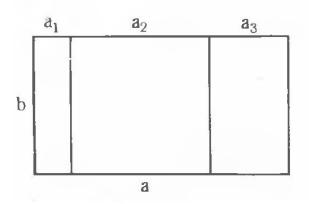
Противоречие.

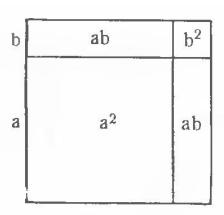
Теэтет:

Если площадь квадрата выражается целым неквадратным числом, то его сторона несоизмерима со стороной единичного квадрата.

Геометрическая алгебра

1.

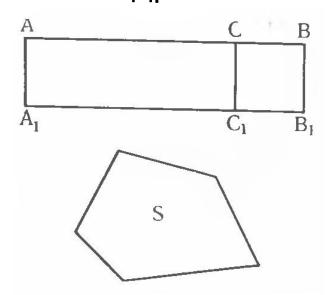




$$b(a_1 + a_2 + a_3) = ba_1 + ba_2 + ba_3$$

2. Задача: преобразовать прямоугольник в квадрат (решить уравнение $x^2 = ab$)

3. Эллиптическая задача: приложить к отрезку AB прямоугольник площади S так, чтобы «недостаток» CBC_1B_1 был квадратом.



$$AA_1C_1C = S$$

$$CB = x$$

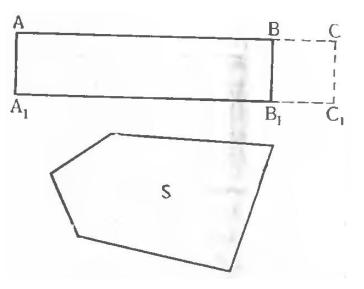
$$AB = a$$

Иными словами, решить уравнение x(a - x) = S

4. Двойственная гиперболическая задача:

К данному отрезку AB приложить прямоугольник с заданной площадью S так, чтобы «избыток» был

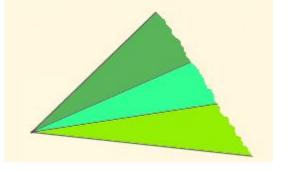
квадратом.



To есть решить уравнение x(a + x) = S

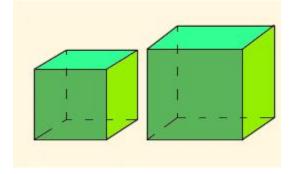
Знаменитые задачи древности (Vв до

н.э.)



трисекция угла

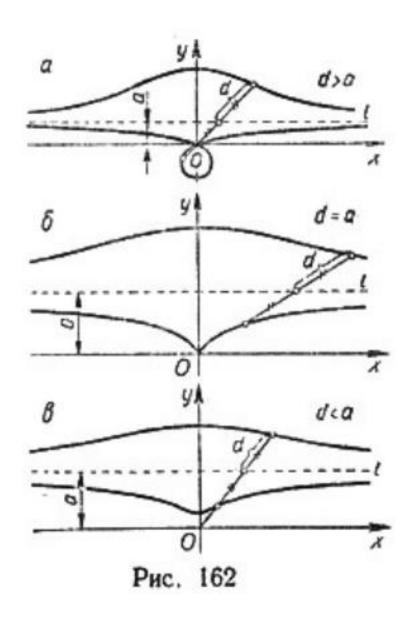
квадратура круга



удвоение куба

Конхоида Никомеда

Конхоида



Квадратриса A' B'

Трансцендентные числа

1844г. – Лиувилль доказал теорему о том, что алгебраическое число невозможно слишком хорошо приблизить рациональной дробью. Он же ввел понятие трансцендентного числа.

1873 г. – Эрмит доказал трансцендентность e.

1882г. – Линдеман доказал трансцендентность π , показав неразрешимость задачи о квадратуре круга.

7-я проблема Гильберта

1890г, ІІ Международный конгресс математиков в Париже.

Если $a \neq 0$ — алгебраическое число, b — алгебраическое иррациональное число, то верно ли, что a^b - трансцендентное?

1934г, Гельфонд доказал верность гипотезы.

 e^π - постоянная Гельфонда