История математики 4 лекция

Лекторы — С.С. Демидов М.А. Подколзина

Весенний семестр 2025 года

Панорама развития математики в древней Греции и в эпоху эллинизма. Пифагорейцы. Открытие несоизмеримости.

Греция и Малая Азия, 431 г. до н.э.

Периодизация. Математика древней Греции

- - VI-V вв до н.э. «греческое чудо»
- - ок. 585 г. до н.э. Фалес, милетская школа
- - ок. 550 г. до н.э. Пифагор
- - ок. 490 г. до н.э. Зенон
- - ок. 430 г. до н.э. Гиппократ Хиосский, Демокрит
- - ок. 370 г. до н.э. Евдокс
- - ок. 350 г. до н.э. Менехм

Периодизация. Математика в эпоху Эллинизма

- ок. 300 г. до н.э. Евклид
- ок. 280 г. до н.э. Аристарх
- ок. 250 г. до н.э. Архимед
- ок. 240 г. до н.э. Эратосфен, Никомед
- ок. 210 г. до н.э. Аполлоний
- Ок. 150 г. до н.э. Гиппарх
- Ок. 60 г. Герон

Далее: Менелай, Птолемей, Диофант, Папп

Греческая система счислений

Аттическая (геродианова)

До IV-III вв. до н.э., впервые описана греческим историком Геродианом, II-III вв н.э.

Аддитивная, непозиционная, близка к римской с.с.

Ионическая (буквенная)

 Непозиционная, буквенная

Аттическая и ионическая с.с.

```
1 2 3 4. 5 6 7 8 9

I II III III Γ΄ Γ΄Ι Γ΄ΙΙ Γ΄ΙΙΙ Γ΄ΙΙΙΙ

10 100 1000 1000 50 500 5000

Δ Η Χ Μ ΙΣ Ϝ΄ Γ΄
```

Греческая нумерация

```
\Gamma^{\Delta} = 50
\Gamma^{X} = 5000
H\Delta\Delta\Gamma III = 128
MM\Gamma^{X}\Delta\Delta\Delta\Delta = ?
```

Алфавитная греческая нумерация

Α,	a',	1.	Ι, ι',	10.	Ρ, ρ΄,	100.
В,	β΄,	2.	Κ, κ΄,	20.	Σ, σ΄,	200.
Γ,	γ,	3.	Λ, λ΄,	30.	Τ, τ΄,	300.
Δ ,	8',	4.	Μ, μ΄,	40.	Υ, υ,	400.
Ε,	ε΄,	5.	Ν, ν,	50.	$\Phi, \phi',$	5 00.
	۶´,	6.	Ξ, ξ',	60.	Χ, χ΄,	600.
Ζ,	ζ,	7.	Ο, ο΄,	70.	$\Psi, \ \psi,$	700.
Η,	η' .	8.	Π , π' ,	80.	$\Omega, \omega',$	800.
θ,	۶,	9.	9, 4',	90.	M',	900.

Пифагорейцы. Открытие несоизмеримости; геометрическая алгебра; знаменитые задачи древности.

Бронников, 1869 Гимн пифагорейцев восходящему солнцу

Математика:

арифметика геометрия астрономия музыка

Арифметика среди прочих наук выделяется совершенством знания.

Архит

Арифметика пифагорейцев

• Число – собрание единиц

Мистика цифр:

- 10 совершенное число, 10=1+2+3+4
- 8 смерть, т.к. сумма цифр чисел, кратных 8, уменьшается от 8 до 1
- 1 матерь всех чисел
- 2 линия
- 3 треугольник
- 4 пирамида

Учение о гармонии

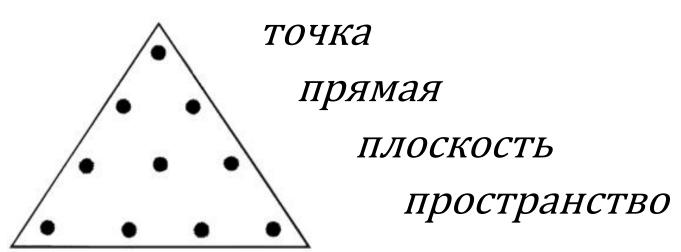
1:2 октава

2:3 кварта

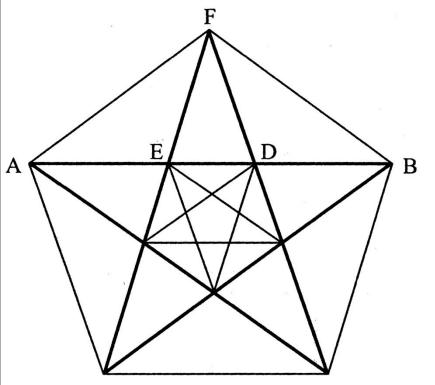
3:4 квинта

$$1+2+3+4=10$$

монохорд



Пентаграмма



Среднее арифметическое

$$AD = \frac{AB + ED}{2}$$

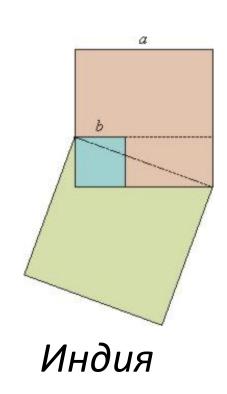
Среднее геометрическое

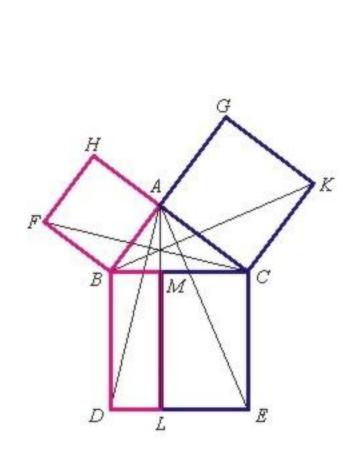
$$AD = \sqrt{AB \cdot AE}$$

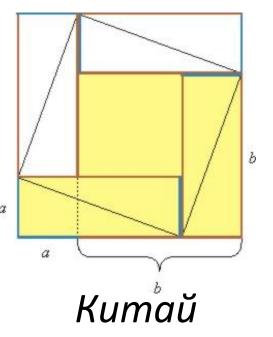
Среднее гармоническое

$$AE = \frac{2AB \cdot ED}{AB + ED}$$

Теорема Пифагора







Евклид «Начала»

Совершенные числа

Совершенное число – это число, у которого сумма его делителей равна ему самому.

$$6 = 1 + 2 + 3$$

28, 496, 8128 (Никомах)

Если сумма $1+2+...+2^n=p$ – простое число, то 2^np – совершенное число.

Эйлер: других четных совершенных чисел не существует.

Нечетные совершенные числа - ?

Дружественные числа

Дружественные числа — это такие, каждое из которых равно сумме делителей другого. Например, 284 и 220.

17296 и 18416 (Ферма)

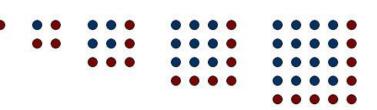
Фигурные числа

Треугольные числа

$$1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$$

Квадратные числа

$$1 + 3 + 5 + \dots(2n - 1) = n^2$$

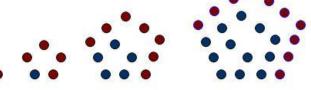


Прямоугольные числа

$$2 + 4 + 6 + \dots + 2n = n(n + 1)$$

Пятиугольные числа

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{1}{2}n(3n - 1)$$



Признаки делимости

```
p — простое число — линейное; p_1 \cdot p_2 \cdot плоское число; p_1 \cdot p_2 \cdot p_3 - телесное число;
```

Учение о чете и нечете

10 пар противоположностей:

предел беспредельное

покой движение

нечет чет

прямое кривое

единое множество

свет тьма

правое левое

хорошее дурное

мужское женское

квадрат параллелограмм

Чет-нечет

Основные результаты:

Произведение делится на два тогда и только тогда, когда хотя бы один из сомножителей делится на два.

Всякое четное число представляется в виде $N = 2^k \cdot N_1$

Теоретико-числовые задачи

1. Задача о нахождении совершенных чисел.

2. Пифагоровы тройки
$$x^2 + y^2 = z^2$$
 Решение: $x = (m^2 - n^2)$ $y = 2mn$ $z = (m^2 + n^2)$

Арифметика дробей

Дробь $\frac{m}{n}$ - это пара чисел (m,n) \sim интервал это пара высот.

Действия:

- +/- путем приведения в общему знаменателю
- сокращение
- */:

Классы эквивалентности (А,В)

Две пары чисел (A, B) и (C, D) пропорциональны, если у A и B существует общий делитель F, а у C и D общий делитель G такие, что

$$A = mF$$
 $C = mG$

$$B = nF$$
 $D = nG$

Пифагорейцы знали, что отношение пропорциональности транзитивно.

Пусть (A_0, B_0) - наименьшая пара.

Доказано:

- 1. Если $A: B = A_0: B_0$, то $A = kA_0$, $B = kB_0$.
- 2. Если A_0 , B_0 взаимно просты, то это наименьшая пара из всех, имеющих с ней одинаковое отношение.
- 3. Если A_0, B_0 составляют наименьшую пару, то они взаимно просты.

4. Если A: B = F: G и B: C = G: H, то A: C = F: H (закон композиции)

5.
$$(A_1A_2:B_1B_2) = (A_1:B_1) \otimes (A_2:B_2)$$

6. Чтобы составить отношения (A:B) и (C:D), надо найти наименьшие числа F, G, H такие, что A:B=F:G и C:D=G:H. Тогда $(A:B)\otimes (C:D)=(F:G)\otimes (G:H)=(F:H)$

Открытие несоизмеримости

Пусть
$$\sqrt{2} = \frac{m}{n}$$
, причем $(m,n) = 1$ $\sqrt{2}$ 1 $2n^2 = m^2$

 m^2 - четное $\Rightarrow m=2k$ — тоже четное

При этом n нечетное, иначе $(m,n) \neq 1$

$$2n^2 = (2k)^2 = 4k^2$$

 $n^2 = 2k^2$ четное $\Rightarrow n$ четное.

Противоречие.